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ABSTRACT

The mass transport (advection-dispersion) equations allowing coupled

second-order reaction (i.e. ω
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C
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 + ω

2
C
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 k12
 Re) between two constituents

are derived and result in a set of coupled nonlinear partial differential
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60 YATES AND ENFIELD

equations. Neglecting the spatial dependence simplifies the equations and

produces coupled nonlinear ordinary differential equations for which

several analytical solutions are provided. The solutions may be used to

illustrate the effect of the second-order reaction mechanism as well as

providing a means for evaluating the reaction constant k12.

INTRODUCTION

In recent years, there has been great concern about the contamination

of soils and aquifers with pollutants from agricultural, municipal and in-

dustrial activities. In agricultural areas, large amounts of pesticides

have been applied to the soil, for example, 370,000 metric tons of active

ingredients were used during 1982 in the USA (Cohen et al., 1984). Other

areas of concern include nitrate contamination of the ground water due to

cropping practices or from animal feedlots (U.S.G.S., 1985; Pye et al.,

1983).

Organic pollutants have been shown to be contaminating the ground

water by seepage from surface and underground storage tanks, evaporation

ponds and lagoons (Pye et al., 1983; U.S.EPA., 1985; Panel on Groundwater

Contamination, 1984). Several field investigations have been conducted to

describe chemical migration from accidental or planned releases. McCarty

et al. (1981) studied the movement of organics from a ground-water injec-

tion well. Hutchings et al. (1984) and Bedient et al. (1983) studied the

movement of organics at rapid infiltration land treatment waste water

treatment systems. Borden et al. (1986), Borden et al. (1984) and Bedient

et al. (1984) have studied ground-water contamination from a wood creosot-

ing site at Conroe, Texas.

At one time the presence and activity of microorganisms in aquifers

was believed to be either limited or even non-existent. Some studies in-

dicate that subsurface conditions do not preclude the existence of an ac-

tive micro- flora and that bacteria could be found at extensive depths in
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the subsurface along with varying amounts of organic carbon (Dunlap and

McNabb, 1973). In addition to natural microorganisms, other potential

micropollutants include enteric microbial agents such as virus and bac-

teria (Bitton and Gerba, 1984; Gerba and Bitton, 1984), and protozoans

(Craun, 1979, 1985; Beloin et al., 1986). Also, contamination of the

ground water may occur from radioactive substances from temporary or

long-term storage facilities (OTA, 1984; Pye et al., 1983; Panel on

Groundwater Contamination, 1984).

Currently, half of the U.S.'s population uses ground water as their

source of drinking water and in rural areas ground water comprises about

80 % of the drinking water needs (OTA, 1984). In Europe, 65 to 98 % of

the population's drinking water comes from ground water (Milde et al.,

1983). In many areas of the country, ground water is the sole source of

potable water (Lehr et al., 1984). Thus, much emphasis has been place on

pro- tecting the ground water supply from contamination.

Whether or not an aquifer becomes contaminated depends on many inter-

related factors. Some of these factors include the hydrogeologic setting,

climate, pollutant characteristics, microbiological environment, and decay

phenomena. Equally important are preventative measures taken to en- sure

that a pollutant remains contained in a storage or waste disposal site.

Once an aquifer is contaminated many of these same factors affect how

long the contaminant will be present in the ground water as well as the

overall areal extent affected by the pollutant. To date, there have been

many investigations concerned with studying the persistence of pol-

lutants in ground water. The persistence of microbial agents in ground

water has been studied by Keswick et al. (1982) and Bitton et al. (1983),

while Yates et al. (1985) studied the temperature effects on virus in-

activation. Research concerned with the transformation of organic pol-

lutants has been undertaken by Alexander (1980), Kobayashi and Rittmann

(1982), Mackay et al. (1985), Macalady (1986), and Delfino and Miles
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(1985) to mention a few. Recent efforts to model the transformation

process are described by Borden and Bedient (1986) and Borden et al.

(1986) who studied the biodegradation of hydrocarbons by bacteria.

Described in this paper are the equations that govern the transport

and transformation of two reactive chemical constituents in ground water

where the influences of inter-constituent reaction is allowed. Several

exact solutions to the coupled nonlinear equations for a stagnant flow

system are provided which illustrate the second-order decay mechanism.

Although the assumptions applied in developing these solutions limit their

usefulness in modeling the contaminant transport process in flow fields,

they do provide a means for verifying more comprehensive finite-difference

or finite-element solutions to the governing equations and, more impor-

tantly, provide a means whereby the reaction coefficients for batch reac-

tor experiments may be obtained.

THE TRANSPORT EQUATIONS

Consider a homogeneous isotropic incompressible porous medium which

contains in aqueous solution a chemical substance, denoted as Ci , where

the substript "1" denotes chemical 1. Further, assume that another chemi-

cal substance is present (denoted C2a) which reacts with C, according to

the second-order reaction mechanism (Ames, 1965; Smith, 1956)

where u, and u. are the stochiometric coefficients, kj^ is the rate con-

stant for the reaction and Re are the products of the reaction. In the

following discussion, it is assumed that the reaction given by Eq. 1 is

Irreversible.

For simplicity, the analytical solutions derived herein assume the

condition u^ - u. ~ 1-0. To obtain the solution when u^ *> uj it is only
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necessary to alter the coefficients of the governing equation. Since the

u-'s are constants, they can be grouped with the coefficients: R^, D^,

V,, k^ and kin (discussed below) to give new coefficients: R^ - <^R^> P_£ -

"i^i1 —i ~ wi^i' —i ~ "i^i an<* —12 ~ uiu2'c12' Th e s e n e w coefficients are

then used in the solutions for C^a and C ^ given below.

The approach to describe the chemical transport process used here is

similar to that of Enfield et al. (1986). The compounds of interest are

assumed to be miscible in the liquid phase and non-volatile. Although

these assumptions will be used here, fluids with an immiscible phase may

also be treated (see Enfield, 1985). A solute may react with the solid

phase by sorption, be transformed while sorbed or transported and/or

transformed in the liquid phase. A vapor phase may be present but is as-

sumed not to participate in the transport or transformation processes.

Mathematically, the transport process is described by equating

various fluxes through an elemental volume and adding any sink mechanisms.

A non-zero quantity represents a change in storage. Following the nota-

tion of Enfield (1985), the transport process in the aqueous phase can be

written as

3(.SpaCia)

iaia la

at ax2 3x

(2)

+ klsa(^b)Cis - kit.a(J/,aCia) - k 1 2(^ a)
2C l aC 2 a

i-1,2

where each symbol in Eq. 2 is described in the Appendix.

Each term in Eq. 2 describes a different part of the transport

process. In particular, the three terms on the left-hand side of Eq. 2

describe the time rate of change in mass, the dispersion-diffusion process

and advection, respectively. The right-hand side of Eq. 2 describes the

effect of various source/sink terms such as the sorption and transforma-
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tion processes. The last term of Eq. 2 describes the coupled transforma-

tion of component "1" in the presence of "2" by the second-order reaction

mechanism.

The concentrations on the solid phase are given by an equation

similar to Eq. 2 except that the dispersion and advection processes are

not included. This is a good assumption since the soil matrix is

stationary.

l

at
i-1,2

The mathematical model developed herein assumes that the reaction between

the two chemical components described by Eq. 1 can occur only in the

aqueous phase. If the chemicals can react in the solid phase as well, an

additional term is subtracted (i.e. k12(0*>D) lsC2s^ f r o m t^ie right-hand

side of Eq. 3.

The total change in mass in the elemental volume is found by adding

Eq. 2 to Eq. 3. That is,

- D i a + V i a

32i a i a

3t 3t 3x2 3x

- " kita(9paCia) - k i t s(p b)C l s - k12(9

i-1,2

Eq. 4 is written with two unknowns: the concentration of each component in

the aqueous phase (C^a) and on the solid phase (C^s)• To write Eq. 4 in

terms of the aqueous phase, a relationship describing the transfer between

the aqueous and solid phases is needed. The rate, r^, in which the sorp-

tion process occurs can be written as

ri " kias<S'a>Cia : kisa'bCis <5>
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Many studies have shown that equilibrium for the reaction in Eq. 5 takes

place rapidly and is approximately reversible (e.g. Schwartzenbach and

Westall, 1981). For such situations the net rate of change from one phase

to the other is zero and the mass ratio would be the equilibrium constant

cis kias(0pa)
- - kid (6)

cia

where k ^ is a unitless linear sorption partition coefficient. Defining

k ^ - k^as/k£sa and if local equilibrium exists, Eq. 4 can be rewritten in

terms of one dependent variable

3C i a 3 2 C i a 3C i a

Rj. - D i a - Vt - kjCia - k 1 2C l aC 2 a (7)
at ax2 ax

i-1,2

where R^ is the retardation factor for component "i" (i.e. R^ — 1 +

k^ is the lumped transformation coefficient k^ - k^ta + kj^kj^s and k^2

*f second-order reaction occurs on the solid phase then k^2

+ k{ dk 2 d].

Eq. 7 is a coupled nonlinear partial differential equation where the

"product nonlinearity" as well as the coupling are due to the right-most

term of Eq. 7.

MEAN FLUID VELOCITY

Each chemical constituent in Eq. 7 is allowed to have a different

average interstitial velocity. At first, this may seem inappropriate but

there is growing evidence that some compounds such as macromolecules

(Enfield and Bengtsson, 1987, in review) and microorganisms (Wollum and

Cassel, 1978; Gronden and Gerba, 1986) that, when excluded from the smal-

ler soil pores, have average pore water velocities that are different than

other compounds or solutes; thus this condition may be necessary. The
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typical case where V, - V^ - constant is still provided by the equation

and solutions contained herein and only causes an additional restriction

on the coefficients. Also, since «^ may not be the same as u>2 the ad-

justed values Vi and V« may not be the same even when V-. — V2.

TRANSFORMED VARIABLE

If it is assumed that the properties of each chemical are such that

the following relationship holds

R2 D2 V 2 k2

( - _ - _ - _ - _ (8)
RX DX VX kj.

where the subscript "a" has been dropped since we are only concerned with

the aqueous phase. A new dependent variable, C (x,t),

C*(x,t) - Cj/x.t) - eC2(x,t) (9)

can be defined which will enable Eq. 7 to be written with the same form as

the advection-dispersion equation, that is,

ac* a2c* ac*
Ri - DX - Vj, - k]C* (10)

at ax2 ax

Given appropriate initial and boundary conditions for C (x,t), solu-

tions to Eq. 10 can be readily obtained (see van Genuchten and Alves,

1982).

The solution to Eq. 10 may be useful in providing a means for deter-

mining k ^ (Ames, 1965) given specific conditions on the coefficients in

Eq. 10 but, in general, the solution to Eq. 10 does not readily provide a

means for obtaining C^ and C2, unless another relationship between C, and

C2 is known.
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ANALYTICAL SOLUTIONS FOR BATCH REACTORS SYSTEMS

Although, in general, Eq. 7 is not amenable to analytic solution, if

the x-dependence is removed several simple solutions may be obtained. For

a batch-reactor system, D^ - V^ - 0. Under these conditions Eq. 7 can be

written as

] ^ j ^ ^ (lla)
dt

dC2

R2 - - k2C2 - k12C1C2 (lib)
dt

CASE I: No first-order decay (i.e. kj - ko ~ 0)

For this situation subtracting Eq. lla from Eq. lib eliminates the

nonlinear terms and a new dependent variable is produced

- 0 (12)
dt

where C*(t) - R1C1(t) - R2C2(t). The solution to Eq. 12 is a constant and

given the initial condition, C*(0) - R1C1(0) - R2C2(0) a relationship be-

tween C^(t) and C2(t) can be found. That is,

C*(t) - R1C1(t) - R2C2(t) - C*(0) (13)

Incorporating C2(t) from Eq. 13 into Eq. lla and rearranging gives a non-

linear ordinary differential equation in one dependent variable

dCj.
+ £ Cx + aCx - 0 (14)

dt 2

where e2 - k12/R2 and a - kj^C (0)/R1R2 and has the solution (see Kamke,

1943, esp. p. 298)
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Cl(O)
Cl(t) - ; (C*(0) * 0) (15)

a t ^ - e"at]/C*(O)

The concentration of C2(t) can be found by using Eq. 13. If It is further

assumed that R - E^ - R2 and that CQ - C-ĵ O) - C2(0), then C(t) - C^t) -

C2(t) and the solution for the aqueous concentration for both constituents

is

Co

C(t) - (16)
1 + k12Cot/R

which is the standard solution for a second-order rate equation (see

Smith, 1965).

CASE II: First-order Decay of Both Components and { -

For this case, subtracting equation Eq. lla from Eq. lib and solving

the ordinary differential equation for C (t) gives

C*(t) - Cx(t) -«C2(t) - C*(0)exp(-k1t/R1) (17)

Solving for C2(t) from Eq. 17 and incorporating it into Eq. lla and rear-

ranging gives the nonlinear ordinary differential equation for

analogous to Eq. 14 where «2 ~
 ki2^R2 a n d a^fc^ ~ tkl/Rl " k i 2 *

The solution is again found from-Kamke (1943)

lo
Cx(t) - (18)

(l-Clo/C*)expUt + (b/.X)[exp(-Xt)-l]) + Cloexp(-At)/cS

where X - kĵ /R-̂ , b - f2Cof Clo ~ cl(°) a n d Co ~ c ^ * "• T h e concentra-

tion of C2(t) in the aqueous solution can be found by using Eq. 17. If «

- 1 and C1(0) - C2(0) then Cx(t) - C2(t). Under these conditions the

solution to Eq. lla is
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lo
Cl(t) - (19)

exp(At) + Clok12[exp(At)-l]/k1

CASE III: First-order Decay of One Specie (i.e. kg - 0 and k^ r> 0) .

For this situation a new variable like C (t) cannot be defined. The

solution for this problem is found by direct integration of Eq. 11 and

using a transform relationship. Since an analytical solution to the

second integral for the transform relationship with respect to time was

not found, the solution is given in implicit form.

In the following discussion, it is assumed that Cy doesn't undergo

first-order decay. Integrating Eq. lib directly subject to the initial

condition C2(0) - C 2 o gives

C2(t) - C2oexp -(k12/R2) /
CC1(t)dt (20)

L ° J

Incorporating Eq. 20 into Eq. lla gives

l f rc 1- -A Cx - € C^oexp -e J CL(t)dt (21)
dt 1 1 L 2 ° J

Defining the transform relationship if>(t) - e J C^(t)dt allows
2 o

Eq. 21 to be rewritten as

_ _ - -A _ - b _ exp(-Vi) (22)
dt2 1 dt dt

where b - «iC2o. Eq. 22 can be directly integrated by noting that

exp(-iJ)dV>/dt - -dexp(-y>)/dt. Carrying out this integration and incorpo-

rating the boundary conditions \6(0) - 0 and d^/dt|t_0 - e2C^(0) - « 2C l o

gives
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i
_ - -A V + b[exp(-y.) - 1] +« C l o - e C!(t) (23)
dt ! 2 2

Since C-̂ (t) may not be negative, the. restriction, i/> < ^n,ax, is adopted

where ^aax is the value of ij> when C^(t) first becomes zero and occurs at

To obtain an explicit relationship between C^ (also C2) with respect

to time, it is necessary to integrate Eq. 23 with respect to time, solve

for $ explicitly and then differentiate to obtain an expression for C,(t)

that is explicit in time. Since no analytical solution to Eq. 23 was

found, an implicit method for solving for C^(t) and C-(t) is necessary.

The first step in the implicit solution is to choose a value of V which

allows one to obtain an exact value, of the concentration C, [also C2(t)

since C2(t) - C2()exp(-^)] from Eq. 23. Since the time is not specified

when using Eq. 23 it must be found by numerically integrating Eq. 23 as

follows

- J dt3X (24)
-A V + b[exp(-tf) - 1] + ( C l o

For t > t m a x > V " ^ m a x and the concentration of
 ci( t > c

m a x) ~ 0-

An approximate solution for t and C^(t) for small >̂'s (and therefore

small times) can be found by using the approximation for the exponential,

e~x =< 1 - x + x /2. Using this approximation in Eq. 24 and integrating

gives (Dwight, 1961)

Ci(t) -

)] - ln[p/q] /b(p-q)

(25)

<P-q)(qp2-pq2)exp[(p-q)bt/2]

e (pexp[(p-q)bt/2] - q} 2
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where p and q are the roots to the quadratic equation; b^/2 + (-A -b~)ij> +

e C]^o and A - 2be Cio - (b+A )
2 < 0. For A > 0 the approximate solution

to Eq. 24 is

(26)

r -l _ -i _ , _
t - 2 tan [(b^-b-A )/JA] + tan [(b+A )/JA]\/JA

2 [ _ -1 _ 1
Cx(t) - Asec L/A t/2 - tan [(b+A )/Jt]\/2be

and for A - 0

b(V>-l) - A b + A

(27)

2be [t/2

In general, since the approximate time, t, is determined by an in-

tegration (as opposed to a differentiation), accurate results were ob-

tained in the examples contained in Table 1 for values of i/> from about

0.40 to 0.95V> „ (for the solid, dotted and dashed lines, respectively,

V>max is 0.5671, 1.745 and 0.09487). The approximate concentrations C1(t)

and C2(t), on the other hand, were found to be less accurate than t even

for relatively low values of ij>. This is due in part to two factors: first

the concentrations are based on an approximate relationship between V and

t and second, they are derived from a differentiation. Therefore, any er-

rors introduced by the approximation propagate more strongly through the

differentiation process. Since exact values of C^(t) can be found from

Eq. 23, there is no reason to use the approximate solutions for the

concentrations. They are included, however, for completeness as they

point to a means for obtaining exact values for C^(t) whenever the in-

tegral can be solved explicitly for rj>.



72 YATES AND ENFIELD

Table 1. Comparison between the analytical and approximate solution
for Case III. The results for the solid, dotted and dashed
lines are the same as in Fig. 3. The values forymax for the
solid, dotted and dashed lines are 0.5671, 1.745 and 0.09487,
respectively.

T*

0.10
0.30
0.50
1.00
1.50
2.00
3.00
5.00

T*

1.00
2.00
3.00
4.00
5.00
6.00
8.00
10.00

T*

0.50
1.00
1.50
2.00
2.50
3.00
5.00
10.00

Cl

0.822
0.568
0.400
0.173
0.077
0.035
0.007
0.000

cl

0.449
0.265
0.173
0.119
0.084
0.061
0.033
0.019

Cl

0.583
0.345
0.206
0.123
0.074
0.045
0.006
0.000

Solid

C2

0.913
0.796
0.723
0.632
0.596
0.580
0.570
0.567

Dotted

C2

0.516
0.365
0.295
0.255
0.231
0.215
0.196
0.187

Dashed

C2

0.962
0.941
0.928
0.921
0.916
0.914
0.910
0.909

Line

i>

0.091
0.228
0.324
0.459
0.518
0.545
0.563
0.567

Line

V*

0.662
1.007
1.221
1.365
1.465
1.537
1.629
1.679

Line

0.039
0.061
0.075
0.083
0.088
0.090
0.094
0.095

T*

0.100
0.300
0.498
0.978
1.410
1.759
2.154
2.302

Tapp

0.976
1.771
2.310
2.657
2.883
3.035
3.213
3.305

Tapp

0.500
1.000
1.499
1.996
2.491
2.981
4.809
6.428

clapp

0.823
0.570
0.405
0.188
0.098
0.059
0.033
0.027

clapp

0.660

--t
.-
--
..
..

Clapp

0.583
0.345
0.206
0.124
0.075
0.046
0.007

o.ooi

t - indicates a value greater than 1.0
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EXAMPLES

To illustrate the effect of chemical reaction on the transport

process, several examples are described that use the analytical solutions

given in cases I, II and III and a finite difference approximation to Eq.

7. For the finite difference approximation, it was assumed that

diffusion-dispersion and advection were negligible. This simplifies the

transport process and allows the effects due to the second-order reaction

mechanism between the two chemical species to be demonstrated in a lucid

manner.

Shown In Figure 1 are the concentration profiles with respect to the

normalized time (T - tk12) that result from using Eq. 15 and Eq. 16

(solid lines) and by the finite difference method (dots). The time scale

has been normalized so that each unit represents a time of l/ki? an(i f° r

all the examples shown kj^ - 0.1. If two chemicals are present and do not

react with one another the time rate of change of each specie is given by

the curve marked "no-reaction". This is a case where kj, in Eq. 11 is

zero. Also shown in Figure 1 are the concentration profiles when

second-order reaction is accounted for. For a situation where the

retardation constants have an equal value (i.e. R^ - R2), the time rate of

change in the concentration of either component is shown by the curve

marked "C^ - C2". As shown in Figure 1, after T - 10 less than 10% of

the original concentration of each chemical remains. This demonstrates

how the second-order reaction mechanism can remove an undesired substance

from a region provided that another harmless substance can be found and

that this substance will react with the other and produce harmless

by-products.

The effect of different retardation coefficients is also shown in

Figure 1 where the dashed curve marked "C^" has R^ - 1 and the curve "C^"

has R2 — 10. It Is evident from this figure that the concentration

profiles for the two species are no longer the same. This is due to the
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O
O

Fig. 1 Concentration profile with respect to normalized time, T* -

Ki^t f° r case I. The retardation coefficients are R, - R^ - 1

for the no reaction and C, - C2 cases. For the C^ * Q-^

profiles, R j — 1 and R2 - 10. The dots indicate the concentra-

tions obtained by finite-difference.

influx of specie "2" into the fluid phase from the adsorbed phase. The

addition of C 2 from the solid phase causes the concentration of C 2 to be

elevated compared to Cj. Assuming that C^ is the undesired specie, only

10% of Cn is removed via the second-order reaction mechanism. Although an

equal quantity of each specie is removed from the system, some of the C 2

has desorbed from the soil to maintain equilibrium conditions. The limit-

ing behavior can also be demonstrated analytically using Eq. 15. If

C*(0) is less than zero, the limiting value for C^Ct) is Clo-
R2c2o/Rl a n d

C2(t) is zero. If, as is the case for this example, C (0) is greater than
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Fig. 2 Concentration profile with respect to normalized time,

k^2c f° r Case II. R^ — e - 1 and k^ - k2 ~ ^12' ^
o r t^l

line and c - 10, R^ - 1, c — 10 and k, - .Olkj^ for the dotted

line and Rĵ  - 1, e - 10 and k-̂  - .lk12 for the dashed line.

zero, the limiting value for C^(t) is zero and C2<t) is ''2o"^

reduce C2(t) to a low level, either repeated additions of C,(t) or a much

higher initial concentration of C-, (compared to C2) would be necessary.

The second example, shown in Figure 2, gives the concentration

profiles when first-order decay is included in the problem. The solid

line is for a case where the first-order decay coefficient has the same

magnitude as kj« and Ri-^2 (i-e- c~l)- For this situation, the concentra-

tion profile for C^(t) and C2(t) are the same. For the cases illustrated

here, this concentration profile decays the fastest because the

first-order decay coefficient is the largest considered and neither specie

adsorbs to the soil matrix.
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The dotted lines indicates the concentration profile for each specie

(marked on line) when k-̂  - 0.01k12, Rj_ - 1 and e - 10 and the dashed line

is for kĵ  - 0.1k12. R^ - 1 and « - 10. Comparing the concentration

profiles for the solid and dotted lines with Figure 1 shows the effect of

the first-order decay coefficient. When decay is included into the

problem, the concentration for both components approaches zero at large

times. For the examples shown in Figure 2, when Rj^R2 the second-order

reaction mechanism appears to operate over relatively short time periods

relative to the species with the larger retardation coefficient. In

Figure 2, after a T of about 2, the second-order reaction mechanism is no

longer affecting the concentration of C 2 and first-order decay is the

primary cause for the reduction in C2. Another way to view this is that

as either component approaches zero the second-order term in Eq. 11 ap-

proaches zero due to the effect of the multiplication.

Shown in Figure-3 are the concentration profiles for a two chemical

system using the third solution (Eqs. 23 and 24). For the solid and

dotted lines, the retardation coefficients for both components are equal

to unity (i.e. no sorption). For the dashed lines, R^ — 1 and R2 - 10.

The first- order decay coefficient for C^ (recall that k2-0) was equal to

k12 for the solid line and k^ - O.lk-j^ for the dotted and dashed lines.

The dots on the solid line are from the finite difference solution and are

used as one means for verifying the solution given by Eq. 24.

Several observations can be made concerning the concentration

profiles in Figure 3. First, as kj-»O the profiles for Cj^(t) approach

C2(t) (i.e. compare solid with the dotted lines). Also, as is the case

for all the solutions presented here, when the retardation coefficients

are not equal the chemical components with the larger retardation coeffi-

cient has higher concentration at any time compared to the other. Since

the concentration of the highly retarded chemical remains elevated

(compared to the Ri~R2
 c a s et i.e. dotted and dashed lines), the profile
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R2 - 1 and - k12
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R2 - 1 and k^ - 0.1k12
 f o r t n e dotted line. R-^ - 1, R2 - 10

and kl - 0.1kl2 for the dashed line. The dots on the solid

lines indicate the concentrations obtained by finite difference.

for the other is lower than the R^~R2 case because of the larger value of

the right-most term of Eq. 21 (i.e. a larger sink).

CONCLUSIONS

The mass, transport equations including the second-order coupled reac-

tion mechanism have been derived producing coupled nonlinear partial dif-

ferential equations. For batch-reactor systems with no concentration

gradients several analytical solutions to the coupled ordinary differen-

tial equations have been found and illustrated by example. Several ap-
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proachs to solving the coupled transport equations have been described and

may give a direction for finding other analytical solutions to the

transport equations which include second-order reaction.

If the second-order reaction mechanism is used as a soil-water

reclamation method, and C 2 is considered the pollutant, the concentration

profile, amount of C, required to adequately reduce the concentration of

C 2 to below prescribed limits and the time necessary to do so can be ob-

tained from the solution of Eq. 7. It is believed that using the

second-order reaction mechanism can offer additional methods for analyzing

reclamation alternatives of polluted soil-water systems.

To use Eq. 7 a value of kj^ for the second-order reaction (see Eq. 1)

must be obtained. The solutions provided herein may be used to evaluate

batch reactor data to obtain a value for k12 whether neither, one or both

species undergo first-order decay provided that the (first-order) decay

constant and the retardation coefficients are known a priori.
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APPENDIX

LIST OF SYMBOLS

Symbol Description Units

^ia>Ci concentration in aqueous phase for specie i M M"*-

C^s concentration in solid phase for specie i M M'^

Dia"^i diffusion-dispersion in aqueous phase for specie 1 I? T"l

k^ lumped transformation rate T"*-

k£ a s first order transfer coefficient aqueous to T"l
solid phase for specie i

k£ s a first order transfer coefficient solid to T"1

aqueous phase

^id'^id unitless soil-water partition coefficient

k^ta first order transformation rate aqueous phase

kj^ts first order transformation rate solid phase

kj^ second-order reaction constant coefficient

^ia>^i interstitial velocity of aqueous phase

6 volume fraction occupied by the aqueous phase

p a density of aqueous phase

p^ bulk density of the soil

DEFINITIONS

a2 = k2/R2 o

62 = k2/V2 6 = ki/Vi = k2/V2

Y 2 = V2/R2 Y = Vi/Rx = V2/R2

E = see Eq. 2

T"

T"

1

1

L3 TM-1

L

M

M

T - l

L-3

L-3



84 YATES AND ENFIELD

5j = t - X/Xj C2 = t - X/X2 5 = t - x/X

£3 = k12/V2

a, b, d, f and g are locally defined (i.e. have different meanings for

each case).
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