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ABSTRACT

Assessments of non-point source pollution, with mathematical models designed to
produce multicolored maps, are now being used in the decision management arena. This
has been possible primarily because of the marriage of solute transport models to geo-
graphic information systems that add a geo-referenced dimension to transport models.
Albert Einstein said that “everything must be made as simple as possible, but not simpler.”
The utility of relatively simple vulnerability maps, which have been produced at regional
scales with geographic information system technology, is undermined by significant
uncertainties related to model and data errors. In this chapter, the three most commonly
used methods for characterizing simulation uncertainties are discussed: sensitivity analy-
sis, first-order analysis, and Monte Carlo analysis. Examples of each method are present-
ed.

Contamination of both surface water and groundwater resources is a global envi-
ronmental concern. Non-point sources (NPS) of contamination, with all the
implications of scale and variability (both spatial and temporal), pose, potential-
ly, even greater environmental problems than those from point sources due to
long-term stresses imposed across thousands of hectares (Loague et al., 1996).
The increasing availability of geographic information system (GIS) software to
those involved in the technical support of land use decisions has resulted in the
generation of multicolored management maps for regional targeting and risk
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assessment. In general, these assessments rest upon soil, climatic, and chemical
data that are extremely sparse and, therefore, contain considerable uncertainty.

In today’s society, there is great interest in quantifying uncertainty to con-
vey the measure of reliability of a data set (e.g., Casti, 1990; Morgan et al., 1990).
This is particularly true for non-point vulnerability assessments. A logical ques-
tion to ask is, what reductions in uncertainty could be made in non-point vulner-
ability assessments if the data upon which the assessments are based were less
uncertain? The obvious follow-up questions to ask relative to any improvements
in non-point vulnerability assessments are, how much additional information is
required to realize the desired simulated reductions in data uncertainty and how
much would this supplemental information cost? The potential of hazardous
waste sites to contaminate groundwater resources has focused tremendous effort
in the hydrogeologic community upon the characterization of the uncertainty
related to subsurface fluid flow and solute transport (e.g., Peck et al., 1988;
Freeze et al., 1989; Gorelick et al., 1993).

Recently, a committee formed at the suggestion of the National Research
Council’s Water Science and Technology Board focused their critical attention on
the techniques used to assess groundwater contamination at regional scales under
conditions of uncertainty (National Research Council, 1993). In that effort the
committee identified three sobering laws in assessing groundwater vulnerability
from non-point sources: (i) all groundwater is vulnerable; (ii) uncertainty is inher-
ent in all vulnerability assessments, and (iii) the obvious may be obscured and the
subtle indistinguishable.

Decisions usually involve some risk (Color Plate 7-l). To bridge the risk
generating gaps that exist within very complex regional-scale systems that are
changing with time and to quantitatively characterize the uncertainties in vulner-
ability assessments requires a rigorous framework for assessing non-point source
contamination that must include (i) field investigation, (ii) an uncertainty model
of near-surface and hydrogeologic environments, (iii) a stochastic-conceptual
model of hydrogeologic processes, and (iv) a decision model. The linchpin to this
type of vulnerability assessment is an uncertainty analysis structure that couples
the various components of a decision model operating within a legal regulatory
framework; i.e., soil science, hydrogeology, economic constraints, ethical ques-
tions, and the political arena.

An understanding of the level of uncertainty associated with the generated
predictions of vulnerability assessment maps is central to the utility of the maps
as decision-making tools. Uncertainties are pervasive in risk-based environmen-
tal assessment problems and thereby impact the decisions made to address those
problems. Even so, risk-assessment and risk-management decisions generally
rely on nominal predictions from models with little or no knowledge of the reli-
ability of those predictions. Uncertainty analysis (i.e., the computation of the total
uncertainty associated with a model’s output by quantifying uncertainty in the
inputs, parameters, or model structure) is indispensable in evaluating the reliabil-
ity of predicted values which contribute to the decision-making process. It is the
objective of this chapter to present a review of the methods associated with uncer-
tainty analysis as related to the modeling of non-point source pollutants.
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Fig. 7-l. Components of risk assessment and risk management (Reichard et al., 1990).

SIGNIFICANCE OF UNCERTAINTY ANALYSIS
TO RISK ASSESSMENT AND RISK MANAGEMENT

The components of risk assessment and risk management are shown in Fig.
7-l. Generally speaking, risk-management decisions are derived from a well-
established framework (Dakins et al., 1994): (i) a mathematical model of envi-
ronmental fate processes is formulated, (ii) nominal parameters are selected, (iii)
a simulation is performed, and (iv) a management decision based on the predic-
tion is developed. Intermediate steps include model verification, sensitivity and
uncertainty analysis, model calibration, and model validation (see Corwin, 1996,
this publication). Uncertainty and sensitivity analysis respectively serve as the
means of establishing the reliability of the simulated model results and of estab-
lishing which uncertain model variables most significantly contribute to the
uncertainty.

Dakins et al. (1994) clearly demonstrated the role and significance of
uncertainty analysis in a risk-based decision framework by implementing uncer-
tainty analysis in an actual problem setting (i.e., remediation of polychlorinated
biphenyl contamination in New Bedford Harbor, Massachusetts). Dakins et al.
(1994) used Monte Carlo uncertainty analysis to examine alternative decisions
and to determine the value of this information by assessing the benefits of includ-
ing a realistic assessment of uncertainty in the decision-making process and the
subsequent benefits of reducing the uncertainty. The report demonstrated that
there can be substantial economic value in formally considering uncertainty in
risk-based environmental remediation decision making. Ultimately, uncertainty
analysis determined the level of resources that should be expended on additional
research and data collection to better characterize or to reduce uncertainty.
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Whereas, sensitivity analysis provided insight into how resources could be spent
to achieve the most cost-effective reduction in uncertainty.

The most elegant guide for dealing with uncertainty in the context of quan-
titative risk and policy analysis, within the framework of hydrogeological deci-
sion analysis, is provided by R.A. Freeze and his colleagues in a comprehensive
four-part paper (Freeze et al., 1990,1992;  Massmann et al., 1991; Sperling et al.,
1992).

UNCERTAINTY AS RELATED TO THE MODELING
OF NPS POLLUTANTS

Non-point source pollutants are by definition diffuse in nature. They are
pollutants such as pesticides, fertilizers, salts, and others that are spread over
large areas; as a result, their spatial nature poses a problem to modelers. Soils are
notoriously complex heterogeneous systems. The modeling of NPS pollutants in
the vadose zone (i.e., the unsaturated-saturated zone located between the soil sur-
face and the groundwater table) must take into account the spatial complexity of
the soil system. Recently, the marriage of solute transport models for pollutants
in the vadose zone to geo-referenced spatial databases referred to as geographic
information systems have assisted in dealing with the spatial physicochemical
heterogeneities found in the soil system.

Because of the spatial and temporal variability of the physical and chemi-
cal properties influencing the transport of solutes in the vadose zone, tremendous
volumes of spatial data are needed as input into the models designed to simulate
NPS pollutants. This combined with the complex nature of solute movement
through unsaturated-saturated soil results in models which even in their simplest
form require numerous parameters and input data. Yet, very little spatial data and
parameter measurements are available for solute transport models of the vadose
zone because state, national and global soils databases were not initially designed
for the purpose of providing input data into models. Rather, the collection of soil
survey data has been based on qualitative assessment of soil properties because
of the labor and cost intensiveness of analytical assessment of soil physical and
chemical properties. The complex nature of transport processes combined with
the sparsity of soil data for solute transport models has focused attention upon the
uncertainty of model predictions for NPS pollutants, and thereby, the reliability
of groundwater vulnerability assessment maps generated from GIS-based solute
transport models of the vadose zone. This has been definitively demonstrated in
a series of papers by Loague and his colleagues (Loague et al., 1989c,  1990,
1996; Loague, 1991,1994).

Geographic Information Systems

The assessment of regional-scale non-point source contamination, based
upon numerical simulation, is facilitated by GIS data handling techniques. A GIS
is an integrated information technology that can include aspects of surface cul-
ture, demographics, economics, geography, surveying, mapping, cartography,
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photogrammetry, remote sensing, landscape architecture, and computer science.
GIS technology links the characteristics of a place, a resource, and/or a feature
with its spatial location. The large volume of data required for regional-scale
analyses of near-surface hydrologic problems has led to a growing demand for
computerized databases. GIS’s  can be used to apply spatial estimation and
smoothing techniques to convert line area data (vector polygons) to cell data
(rasters). For example, point data, such as soil survey information, can be con-
verted into area surface data through surface generation algorithms and then
accessed as cell input parameters (National Research Council, 1993). The princi-
pals and nuances of GIS techniques are lucidly reviewed by Burrough (1986).
Much of the information needed to excite surface and subsurface simulation mod-
els can be contained within a well-designed GIS; therefore, it appears that there
is a fantastic potential for good marriages between hydrologic response models
and GIS.

Modeling

Snyder (1973),  commenting on the pioneering heuristic simulation efforts
of Freeze (1972),  said:

The steps in classical scientific method might be personalized by the statement, “I
observed, I measured, I analyzed, I hypothesized.” Sole reliance on computer sim-
ulation contains dangerous elements of a philosophy based on the premise, “1 con-
structed, I computed; therefore, it is”.

Obviously, due to the uncertainties inherent in deterministic-conceptual
simulation, sole reliance on computer modeling is not a wise course for predict-
ing the nuances of hydrologic response; however, modeling has come a long way
in the last 25 yr, and Snyder’s remarks have given way to a balance between
observation and simulation (refer to Freeze, 1973). No longer are environmental
models of little or no practical value. The tremendous advance in high speed dig-
ital computers and the use of physics-based numerical simulation has greatly
facilitated our ability to ask what if questions relative to the assessment, remedi-
ation, and protection of the environment.

What is the practical value of models? In general, there are two idealized
uses for simulation in hydrology (Loague et al., 1995). The first use is in the pre-
diction of future events based upon a calibrated and validated model. The second
use is the development of concepts for the design of future experiments to
improve our understanding of processes. Improvements to prediction and concept
development can benefit from performance standards and uncertainty analysis
designed to uncover information shortfalls and process misrepresentation.

A model used to make predictions should first be calibrated and validated.
Validation is used here in the context proposed by American Society for Testing
Materials (1984). Summary variables can be used to calibrate a model at a given
time by adjusting parameter values until an acceptable simulation is achieved.
Once this fit is obtained, another simulation is performed for a later time and
compared with a second set of measured data. If the second simulation also is
acceptable, the model is considered validated. Model parameters are not adjust-
ed, based upon field data, during validation. If the parameters are adjusted, for
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simulations subsequent to a calibration, then the effort is not a validation but a
recalibration. The level of model performance should be the same for the split
sample calibration and validation periods. Few parameters used in simulation can
be gleaned directly from field measurements; therefore, calibration and validation
are usually required for application of a model. A model that is calibrated and val-
idated for a given range of conditions can, in principal, be used to predict. Most
often, however, hydrologic response models are not reliable predictors because
they have only been calibrated, sometimes recalibrated, but not validated. If it is
not possible to validate a model that has been well calibrated, then either the data
used during the fitting processes were unreliable or the model itself is incorrect.

There are three sources of inherent error to hydrologic modeling that can be
easily identified: (i) model error, (ii) input error, and (iii) parameter error. Model
error results in the inability of a model to simulate the given process, even with
the correct input and parameter estimates. Input error is the result of errors in the
source terms and can arise from measurement, juxtaposition, and/or synchro-
nization errors. Parameter error has two possible connotations. For models requir-
ing calibrations, parameter error usually is the result of model parameters that are
highly interdependent and nonunique. For models with physically-based parame-
ters, parameter error results from an inability to represent aerial distributions on
the basis of a limited number of point measurements. The aggregation of model
error, input error, and parameter error is the total (or simulation) error. For multi-
process models, simulation error is further complicated by the propagation of
error between model components.

Model Performance Evaluation

To the best of our knowledge, no regional-scale physically-based hydro-
logic response model has ever been rigorously validated using previously estab-
lished standards. Most often, the validation of an established model’s perfor-
mance is attempted outside the range of the model’s calibration. Although there
is tremendous literature concerned with mathematical models of hydrologic
response, there has been relatively little written, until recently (e.g., Konikow &
Bredehoeft, 1992; Oreskes et al., 1994), about procedures for evaluating model
performance. Evaluation of model performance should include both statistical
criteria and graphical displays (see Loague & Freeze, 198.5; Loague & Green,
1991). A combined assessment approach can be useful for making comparative
evaluations of model performance between alternative-competing models.

A model is a good representation of reality only if it can be used to predict,
within a calibrated and validated range, an observable phenomenon with accept-
able accuracy and precision. Of course, no model can ever be detailed enough to
be valid for all situations. Therefore, upon selecting what processes are to be
modeled, a modeler must set a level of desired accuracy and precision for model
validation. A first-cut evaluation of model performance is to compare summary
statistics for observed and predicted data. A second evaluation is to use a test sta-
tistic to compare measured data against simulated results. A model’s performance
is judged acceptable if it is not possible to reject the hypothesis of no difference
between observed and predicted values. Two types of error are possible using a
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test statistic at a given confidence level. Type-l error is a risk to the model builder
and corresponds to rejecting a true hypothesis. Type-II error is a risk to the model
user and corresponds to accepting a false hypothesis. Analysis of residual errors,
the difference between observed and predicted values, also can be used to evalu-
ate model performance by characterizing, for example, systematic under- or over-
prediction.

Statistical measures of model performance can have serious limitations.
Graphical displays are often useful for showing trends, types of errors, and dis-
tribution patterns. Several types of graphical display are possible (see Loague &
Green, 1991). Graphical techniques can be used to (i) judge the quality of model
performance at specific sites, (ii) evaluate model performance for several sites at
once (i.e., not one-to-one tests), (iii) identify systematic errors in the form of
over- and under-prediction, and (iv) characterize spatial variations in and
between field observations and model predictions.

CHARACTERIZATION OF UNCERTAINTY

A comprehensive review of the analysis of uncertainty pertaining to water
quality modeling was prepared by Beck (1987). A large array of methods has
been developed to deal with uncertainty in models from two distinct viewpoints
(Summers et al., 1993): sensitivity analysis methods where the primary concern
is the propagation of error by models, and uncertainty analysis methods where the
causes of prediction uncertainty are the concern. Uncertainty analysis is distinct
from sensitivity analysis because it considers the inherent uncertainty in model
input data and the subsequent effects this uncertainty has on the model output,
whereas sensitivity analysis makes no use of information concerning the sources
or ranges of uncertainty in model input data (Beck, 1987).

Methods for estimating the uncertainty in model predictions of determinis-
tic models generally fall into two major categories (Summers et al., 1993): first-
order variance propagation and Monte Carlo methods. First-order variance prop-
agation methods involve the computation of a deterministic output trajectory for
the model, followed by the quantification of the influence of small amplitude
sources of input uncertainty about the trajectory (Burges & Lettenmaier, 1975;
Argantesi & Olivi, 1976). Monte Carlo methods involve the repeated sampling of
the probability distribution for model parameters, variables, boundary conditions,
and initial conditions, and the use of each set of samples in a simulation (Ruben-
stein, 1981). The probability distribution of the model prediction is derived from
the collection of model predictions resulting from the repeated simulations. Less
frequently used methods of estimating prediction uncertainty include explicit
variance propagation techniques such as the Kalman filter (Moore, 1973; Depal-
ma et al., 1979; Beck, 1987),  systematic statistical techniques such as fractional
factorial designs (MacNeil et al., 1985), and frequency domain analysis (Dwyer
& Kremer,  1983). It would seem that the explicit variance-propagation methods
would have greater appeal than the computationally-intensive approach of the
Monte Carlo method; however, the setup of the variance propagation algorithm
must be hand-programmed for each model making the process labor intensive
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while the primary disadvantage of the Monte Carlo approach is the cost of com-
puter computations (Summers et al., 1993).

Sensitivity Analysis

Sensitivity analysis is used to measure the impact that changing one factor
has on another. The sensitivity of a model’s output to a given input parameter is
the partial derivative of the dependent variable with respect to the parameter:

where, Xi,j  is the sensitivity coefficient of the model dependent variable y with
respect to the jth parameter at the ith observation point. Sensitivity analysis can
be extremely useful in identifying the most important (sensitive) parameters in
the trial and error calibration of a hydrologic-response model (e.g., see Loague,
1992). The sensitivity coefficient in Eq. [l],  with respect to a given parameter,
can be approximated by making small perturbations in the parameter of particu-
lar focus while keeping all the other parameters constant and then dividing the
change in the dependent variable by the change in the parameter (Zheng & Ben-
nett, 1995):

ilyi
xq-q=

A(aj + A\aj)  - _fi(aj)
Aaj [2]

where, AUj is the small change (perturbation) in the parameter. Equation [l] can
be normalized by the parameter value so that the sensitivity coefficient with
respect to any parameter is the same unit as that for the dependent variable:

Based on Eq. [3],  Eq. [2] can be written as:

3-C

xii=-=
~i(Uj + Aaj) - ji(Uj)

Aaj / aj

In the remainder of this section an example is given of an application of
sensitivity analysis as applied to simulations of pesticide leaching in Hawaii with
the U.S. Environmental Protection Agency’s Pesticide Root Zone Model
(PRZM). PRZM, developed by the U.S. Environmental Protection Agency
(Carsel et al., 1984) as a field-scale solute transport simulation tool for partial
assessment of potential groundwater contamination hazards related to near-sur-
face agrochemical applications, is a one-dimensional, deterministic-empirical-
conceptual model that simulates soil-water movement via an empirical drainage
algorithm and solute transport with the conceptual advection-dispersion equa-
tion. The daily water-balance option is expressed as:
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80+Rf-I+Z,-Ev-T=8, [5]

where, 8, is the current soil-water content, 8e is the initial soil-water content, Rf
is rainfall plus irrigation, I is percolation out of a layer, I, is percolation into a
layer from the layer above, E, is evaporation, and T is transpiration. Using the
free drainage option, the soil-water velocity is calculated by dividing the amount
of percolating water by the soil-water content and then averaging over a one-day
time step. Evaporation is estimated based on pan evaporation data and crop infor-
mation. The simplified advection-dispersion equation used in PRZM is
expressed as:

D a2(ce)  qcev) a[c(e +
--,z+A-C[k(q+&P/d=  at

&A%)]
a22 [6]

where, C is the dissolved concentration of solute, 8 is the volumetric soil-water
content, K,, is the sorption partition coefficient, pb is the soil bulk density, t is
time, D is the hydrodynamic dispersion coefficient,  z is depth, A is the amount of
solute applied, and k is the transformation rate. The limitations of PRZM, specif-
ic to the application in Hawaii, are discussed in some detail elsewhere (see
Loague, 1992; Loague et al., 1989a,b).  Results from the sensitivity analyses for
the Hawaii PRZM simulations are shown in Fig. 7-2. Inspection of Fig. 7-2
shows, for this set of simulations, that the peak EDB concentration is most sen-
sitive to changes in the decay rate coefficient.

First-Order Analysis

First-order analysis is a simple technique for quantifying the propagation of
uncertainty from input parameter to model output. The first-order approximation
of functionally related variables is obtained by truncating a Taylor-series expan-
sion (about the mean) for the function after the first two terms. The general case
of a multivariate relationship approximated to the first order is given (Cornell,
1972) by:

where, X is a column vector of random variables, =I means equal in the first-
order sense, p, is a vector of means, and bT is the transpose of a vector of partial
derivatives. The ith element of b is given by:

b, = a&9
1 aXi

The mean pv and variance oTy2 of the dependent variable Y are given (Cornell,
1972) by:
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Fig. 7-2. Sensitivity of PRZM-predicted ethylene dibromide (EDB) concentration profiles for Field
4210a,  located in the Pearl Harbor Basin on the Hawaiian island of Oahu, for 1983. The parame-
ters or variables subject to sensitivity analysis include: (a) the rainfall rates, (b) the organic C dis-
tribution coefficient, (c) the volatilization rates, (d) the decay-rate coefficient, (e) the hydrodynam-
ic dispersion coefficient, and (f) the runoff curve numbers. The solid lines are the base case simu-
lation, the dotted lines +l0%, and the dashed lines -10% (after Loague et al., 1989a).

03 =* bTCxb [10]

where, Cx is the covariance matrix of the functionally dependent variables Xi.
The distributions of the dependent variables are assumed to be normally distrib-
uted. For the special case where the Xi are uncorrelated, first-order analysis
reduces to the familiar first-order error propagation equation given by:

[11]
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In the remainder of this section an example of an application of first-order
uncertainty, as applied to the attenuation and retardation factors for pesticide
leaching assessments in Hawaii, is given (for more detail, see Loague, 1991,
1994; Loague et al., 1989c,  1990). The attenuation factor (AF) is defined as:

where, d is the distance to groundwater (or some compliance depth) from the sur-
face, RF is the retardation factor, 0r, is the soil-water content at field capacity, q
is the net groundwater recharge, and t,,2 is the pesticide half-life. Pesticide trans-
formation is represented in AF with a first-order degradation approximation. The
pesticide half-life is related to the first-order relationship by:

0.693
t1/2 = -k

where, k is the first-order degradation rate coefficient. Advective  transport is
approximated in AF with an estimate of pesticide travel time given by:

7=
dmefc

[14]
4

Based upon Eq. [12], [13],  and [14], the AF index can be defined as:

AF = exp(-kr) [15]

AF represents an index of the pesticide mass emission from the vadose zone. The
range of possible values for AF is between zero and one; the larger the value of
AF, the more likely it is that the chemical will leach. The retardation factor in Eq.
[12] is defined as:

RF--l+phfocK,
efc

[16]

where, pb is the soil bulk density, f,, is the soil organic C, and K,, is the pesticide
sorption coefficient. RF is an index of the retardation of pesticide leaching
through soils due to sorption. For nonsorbing pesticides RF = 1; with increasing
K,,, RF becomes larger. The larger the RF value, the less mobile the chemical is.

The uncertainty in AF and RF indices contributed by the ith parameter is
given by:

[17]
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Table 7-l.Estimates of diuron leaching potential with the attenuation factor (AF) and retardation fac-
tor (RF) indices, and uncertainties calculated by first-order uncertainty analysis for the Pearl Har-
bor Basin on the Hawaiian island of Oahu for native recharge rates (after Loague, 1991).

Soil order

AF
sAF

RF
%F

CfGc

cefc

C pb
ckzx

Inceptisols Mollisols Oxisols

1.3E-21 3.5E-13 l.lE-7
9.3E-20 1.1E-11 2.7E-6

59.5 27.2 26.2
58.4 23.0 23.5
32.3 12.3 14.1
12.9 4.0 3.3
20.3 2.5 3.2
42.4 18.9 18.3

Ultisols Vertisols

6.8E-3 l.8E-10
3.8E-2 4.7E-2

44.1 18.6
34.3 16.2
11.7 9.8
5.0 1.4
6.6 1.4

31.1 12.8

where, I is either AF or RF and Spi  represents the standard deviation of the para-
meter Pi. The total uncertainty in AF and RF is given by:

[18]

[19]

For AF, the five parameters are d, RF, 8r,, 4, and t,,z;  for RF, the four para-
meters are pb,foc,  K,,, and 8,. The equations for the AF and RF component uncer-
tainties are given by Loague et al. (1990). Results from the first-order uncertain-
ty analysis for the AF and RF leaching indices for the five soil orders in the Pearl
Harbor Basin are given in Table 7-1. The RF results are illustrated in Fig. 7-4.
Inspection of Table 7-l and Color Plate 7-2a,  b, c shows convincingly that the
impact of data uncertainties can be significant in regional-scale vulnerability
assessments for non-point source groundwater contamination. One can easily see
that (i) the AF and RF values show considerable variability for diuron for the five
soil orders, (ii) the magnitudes of S AF and SRF for each soil order are similar to
the AF and RF values for diuron, and (iii) the classification of RF for diuron is
changed for all five soil orders in the Pearl Harbor Basin to a poorer category by
accounting for a single standard deviation in the original estimate.

Monte Carlo Analysis

Monte Carlo analysis is a stochastic technique of characterizing the uncer-
tainty in complex hydrologic response model simulations. The Monte Carlo
method considers each model input parameter to be a random variable with a
probability density function (PDF). Monte Carlo simulations are based upon a
large number of realizations, from every input parameter distribution, created
through sampling the different PDF’s with a random number generator. A sepa-
rate hydrologic response simulation is made for each parameter realization. The
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number of possible simulations, based upon all the combinations of parameter
realizations, is infinite; therefore, a finite number of cases (usually several hun-
dred) are usually investigated. Estimates of the average simulated hydrologic
response, and the associated uncertainty are made from the combined outputs of
the simulations (i.e., the total ensemble of the different realizations). Recent
applications of uncertainty analysis in modeling the transport of solutes through
soils with the Monte Carlo technique were performed by Zhang et al. (1993) and
Bobba et al. (1995).

In the remainder of this section an example is given of an application of
Monte Carlo analysis as used in a hydrologic game of rainfall-runoff simulation
using hillslope-scale synthetic data sets. The process-based stochastic-conceptu-
al rainfall-runoff simulator (SCRRS) used to create hypothetical realities is rep-
resented by the following six-step Monte Carlo procedure (Freeze, 1980; Loague
& Freeze, 1988; Loague, 1988a,b):

1. Generate the time-independent hillslope parameters: topographic eleva-
tion, overland flow travel time, saturated hydraulic conductivity, poros-
ity, and a soil-water storage parameter (e.g., Fig. 7-3).

2. Generate the external properties for each rainfall event: the time since
the previous storm, the storm duration, and the total storm rainfall depth.

3. Generate the initial hillslope conditions for each event: the watertable
elevation, the unsaturated soil depth, the initial soil-water content, and
the initial soil-water deficit.

4. Generate the internal rainfall intensity pattern for each time step of each
event (e.g., Fig. 7-4).

5. Calculate the infiltration rate and the rainfall excess for each time step
of each event.

6. Calculate the streamflow hydrograph for each event.

With the six-step SCRRS procedure, the near-surface hydrologic response for N
rainfall-runoff events can be simulated. Results from Monte Carlo simulations of
rainfall-runoff response with SCRRS are shown in Fig. 7-5. Inspection of Fig.
7-5 shows the differences in equally likely realization of near-surface response
that lead to changes in the distribution and dominance of the overland flow mech-
anism. Figure 7-5a shows the distribution of saturated hydraulic conductivity for
ten hillslopes (from a 25 realization ensemble). Figure 7-5b  shows the control
that the distribution of saturated hydraulic conductivity, for the 10 hillslopes in
Fig. 7-5a, has on the generation of overland flow for 100 rainfalls. Loague
(1988a) has shown, for 12 000 SCRRS synthesized rainfall-runoff events, that the
characterization of the spatial distribution of near-surface soil hydraulic property
information has a greater impact on the characterization of hillslope runoff that
corresponding descriptions of rainfall.

VALUE-OF-INFORMATION ANALYSIS

Value-of-information analysis is increasingly being used in environmental
risk assessment and management (Finkel & Evans, 1987; Reichard & Evans,
1989; Patwardhan & Small, 1992; Taylor et al., 1993; Dakins et al., 1994). Value-
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of-information analysis permits answers to questions concerning how much addi-
tional information is needed to result in desired simulated reductions in data
uncertainty and how much this information will cost.

Value-of-information analysis provides a framework for assessing the ben-
efits of including an assessment of uncertainty in the decision making process and
the subsequent benefits of reducing this uncertainty (Dakins et al., 1994). The
expected value of information (EVOI) is the expected increase in the value (or
decrease in the loss) associated with obtaining more information about quantities
relevant to the decision process and taking the appropriate action based on this
information (Raiffa, 1968). In other words, the EVOI is a measure of the signifi-
cance of uncertainty about a quantity in terms of the expected improvement in the
decision that might be obtained from having additional information about it. The
expected value of including uncertainty (EVIU) is a measure of the value of
explicitly modeling uncertainty in a quantity instead of assuming a fixed value
(Morgan et al., 1990). It is the expected difference in value of a decision based on
a probabilistic analysis and a decision made from an analysis that ignores uncer-
tainty (Dakins et al., 1994). The EVIU is a useful tool for assessing the benefits
of using uncertainty analysis. The expected value of perfect information (EVPI)
is the difference between the expected loss of the optima1 management decision
based on the results of the uncertainty analysis and the expected loss of the opti-
mal management decision if all uncertainty were eliminated (Dakins et al., 1994).
Because no data-collection program can completely eliminate uncertainty, the
EVPI represents an upper bound for the expected value of efforts to reduce uncer-
tainty.

Dakin et al. (1994) clearly demonstrated the practical utility of value-of-
information analysis for making optima1 management decisions by incorporating
uncertainty into mode1 predictions concerning a risk-based decision for environ-
mental remediation. Dakins et al. (1994) presented an illustrative application for
New Bedford Harbor in Massachusetts concerning polychlorinated  biphenyl
(PCB) sediment contamination and uptake by winter flounder. Including uncer-
tainty resulted in an increase in the sediment remediation volume over the man-
agement decision arising from the deterministic analysis. Value-of-information
analysis made the penalties for under- and over-conservatism explicit so that an
optima1 strategy was determined that balanced competing penalties, minimized
long-term costs, yet rendered a practical environmental decision.

CONCLUSIONS

There is no doubt that the current generation of potentially useful regional-
scale, deterministically-derived, GIS-driven vulnerability maps are laced with
mode1 and data errors. It seems obvious that GIS-generated vulnerability maps
will not be useful in the decision management arena (for regulatory policy) until
(i) mode1 and data uncertainties are incorporated into the assessments, and (ii)
nonsubjective criteria are established to make assignments of good and bad areas
relative to specific questions. For example, most GIS-constructed parameter sur-
face maps are based on point value measurement averages that are extrapolated
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to large unsampled regions without consideration for the variability in the mea-
sured data. As shown in the example of first-order uncertainty analysis, the vari-
ability within an input data set can provide substantial opportunity for propaga-
tion errors. As already noted by Loague et al. (1996),  there are several areas of
concern related to GIS-generated vulnerability maps that need to be acknowl-
edged in existing assessments and addressed in those developed for the future:

l The location of field measurements should be included on all data over-
lay maps. Information imported from outside the region of interest
should be tagged as such.

l The method(s) used for data extrapolation to unsampled sites should be
described. The use of spatial interpolation techniques such as geostatis-
tics facilitates the characterization of data uncertainties.

l The uncertainty in data overlay maps should be presented as separate
maps.

l The number of samples used to determine soil characteristics at given
classification (e.g., order) should be similar, relative to the size of the
area being represented for each taxonomic category.

l The correlation between (and within) data sets should be considered to
prevent the calculation of redundant uncertainties.

l Serious consideration should be given to the grid sizes used in GIS over-
lays. One must also acknowledge that soils information, for example,
accumulated over many years for purposes other than regional-scale vul-
nerability assessments will not always be adequate; additional sampling
and analysis will almost certainly be required. No longer can information
continue to be used solely because it was collected in the past.

l Hydrologic response models used to generate vulnerability maps should
be subjected to rigorous evaluation based on field observation and com-
parisons with physics-based simulations of coupled systems.

l Statistical criteria and graphical displays should be used to judge region-
al-scale non-point source vulnerability assessments. The establishment
of acceptable performance standards must be addressed.

l Supplemental data collection should be based on reduction in
data/assessment uncertainties and economic feasibility.

l Temporal variability (not just spatial variability) needs to be incorporat-
ed into vulnerability assessments.

l The heterogeneity of near-surface soil/geologic columns needs to be
accounted for in regional-scale non-point source vulnerability assess-
ments.

SUMMARY

Decision analysis is a technique to help structure and organize a decision
maker’s thought process, to elicit judgments, to check for internal consistencies
in the judgments, to assist in bringing these judgments into a coherent whole, and
to process the information with the goal of identifying the best strategy for action
(Dakins et al., 1994). Decision analysis relies heavily on the Bayesian statistical,
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or subjectivist, point of view in which the subjective prior probabilities are com-
bined with new data to reach an updated information knowledge level. Uncer-
tainty analysis offers promising opportunities to improve the effectiveness of
environmental modeling to support risk-based environmental decision analysis. It
can provide decision makers with the tools to make better-informed decisions.
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