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Nonpoint source (NPS) pollutants are recognized as the
single greatest threat to surface and subsurface sources of
drinking water throughout the world. The vadose zone
serves as the conduit through which NPS pollutants travel
through surface soil to groundwater supplies. Because
of increased dependency on groundwater supplies, the ability
to model groundwater vulnerability to the leaching of NPS
pollutants through the vadose zone has grown in
significance. Geographic information systems (GIS) have
emerged as a useful tool in environmental modeling,
particularly for NPS pollutants. A review is presented
concerning the modeling of NPS pollutants in the vadose
zone with GIS. Areas discussed include the significance
of NPS pollutants as a global environmental problem, the
justification for the modeling of NPS pollutants in the
vadose zone with GIS, the basic components of environmental
modeling with GIS, a review of existing GIS-based NPS
pollutant models, the application of geostatistics to GIS-
based NPS pollutant modeling, the influence of scale, the
reliability of NPS pollutant models based on model error and
data uncertainties, and the future direction of GIS-based
NPS pollutant modeling. The proliferation of GIS-based
NPS pollutant models holds promise, yet caution is needed
to avoid misuse of a potentially valuable environmental
assessment tool for decision makers.

Introduction
Background. The information age of the 1990s is a time of
global consciousness and competition where science and
technology are at the forefront. For example, the application
of science and technology is crucial in the solution of current
and future global environmental problems. The world faces
a wide variety of complex environmental threats: the loss of
biodiversity; the depletion of the ozone layer; global climate
change; the degradation of soil and water resources essential
for food production; and the accumulation of widespread,
health-threatening pollution.

Among the foremost global problems facing mankind is
how to satisfy the ever-growing need for natural resources to
meet living-standard and food demands, while minimizing

impacts upon an environment that already shows signs of
serious levels of biodegradation. Over the past 25 years, the
world has recognized that environmental problems are
inseparable from those of human welfare and from the process
of economic development and that many present forms of
development erode the environmental resources on which
human livelihood and welfare ultimately depend. This
awareness has fostered the concept of sustainable agriculture
as a means of meeting the world’s future food demands.

The goal of sustainable agriculture is to meet the needs
of the present without compromising the ability to meet the
needs of the future. This presents a formidable dilemma
because agriculture remains as the single greatest contributor
of nonpoint source (NPS) pollutants to soil and water
resources (1). Concomitantly, NPS pollutants are globally
recognized as the single greatest threat to surface and
subsurface sources of drinking water.

Characteristically, NPS pollutants do not recognize the
political boundaries separating nations; are widespread in
nature, making remediation efforts extremely complex and
difficult; have the potential for maintaining a relatively long
active presence in the global ecosystem; and may result in
long-term, chronic effects on human health and aquatic
degradation. Historically, NPS pollutants have received less
attention than point source pollutants (i.e., pollutants isolated
to a single “point”) because point source pollutants are usually
highly toxic, which poses an immediate threat to health.
However, public concern has recently shifted to NPS pol-
lutants because point source pollutants are easily identifiable
(i.e., their location and identity are usually known), which
makes them less of an unknown threat, whereas NPS
pollutants originate from multiple sources and can have a
cumulative effect that persists for several years or decades
later.

Like the shift in concern from point source pollutants to
NPS pollutants, public concern over the presence of NPS
pollutants in different environmental compartments has also
changed. In the past, NPS pollutants in surface waters were
the primary environmental concern because the detection of
low-level concentrations of NPS in subsurface water could
not be confirmed. However, lower detection limits of
analytical equipment and increased reliance upon ground-
water as a water source for drinking and agriculture have
brought public attention to the leaching of NPS pollutants
through soil and into groundwater supplies.

* Corresponding author’s phone: 909-369-4819; fax: 909-342-4962;
e-mail: dcorwin@ussl.ars.usda.gov.

S0013-936X(96)00796-1 CCC: $14.00  1997 American Chemical Society VOL. 31, NO. 8, 1997 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 9 2157

kailey.harahan
Typewritten Text
1467



The reasons for the increased concern over the degradation
of soil and groundwater resources are the result of the
alarming rate of their degradation and the increased depen-
dency upon these resources. The degradation of soil resources
by human activities occurs at an unprecedented rate. It is
estimated that globally 30-50% of the land is affected by NPS
pollutants (2). Currently, an area approximately the size of
China and India combined suffers moderate to extreme soil
degradation caused by agricultural activities, deforestation,
and overgrazing that has occurred over the past half century
(3). This represents 11% of the world’s vegetated surface,
i.e., 1.2 billion ha. Of the 1.2 billion ha, approximately 12%
are the consequence of chemical degradation resulting from
salinization, acidification, and pollution (3). The concern
over NPS pollution of the vadose zone is not only because of
the degradation of the soil but also as a potential source of
contamination to groundwater supplies due to the process
of leaching. As surface water supplies have diminished in
quantity and quality, greater demands have been placed upon
groundwater supplies to meet domestic, agricultural, indus-
trial, and recreational demands. In fact, 50% of the drinking
water and 40% of the irrigation water used in the United
States come from groundwater supplies. Because of the
uneven distribution of available surface water supplies
worldwide, the demand is even greater for groundwater
supplies in countries such as Mexico. The awareness of the
importance of groundwater supplies in meeting drinking and
agricultural water demands has brought the concern over
the degradation of groundwater to the forefront of public
attention particularly in the United States and in European
countries.

The ability to model NPS pollutants in the vadose zone
provides a tool to optimize the use of the environment by
sustaining its utility for food production while minimizing
detrimental impacts and preserving esthetic qualities. The
spatial complexity of the earth’s surface and subsurface makes
the problem of modeling NPS pollutants a data-intensive task.
The volume of information needed to temporally and spatially
characterize the physical, chemical, and biological parameters
and variables needed in even the simplest functional models
of solute transport in the vadose zone is tremendous. The
ability to retrieve, manipulate, and display this onerous
volume of information is a task perfectly suited for a
geographical information system (GIS). The coupling of GIS
to a model of solute transport in the vadose zone is a marriage
designed to address the spatial problem of simulating NPS
pollutants at various scales: field, basin, regional and global.

Assessing NPS Pollutants with GIS
Assessing the environmental impact of NPS pollutants at local,
regional, and global scales is fundamental to achieving
sustainable agriculture. Assessment involves in-situ quan-
tification of a NPS pollutant and/or the determination of
change of some NPS pollutant over time. This change can
be measured in real time or predicted with a model. Real-
time measurements reflect the activities of the past, whereas
model predictions are glimpses into the future based upon
a simplified set of assumptions. Both real-time measurement
and model prediction are valuable. However, the advantage
of prediction is that it can be used to alter the occurrence of
detrimental conditions before they develop. Predictive
models provide the ability to get answers to “what if”
questions. Due to the expense and labor intensiveness of
long-term field studies to quantify NPS pollutants, computer
model simulations are increasingly more appealing. Forecasts
from model simulations can be used in decision-making
strategies designed to sustain agriculture. Such forecasts
permit alteration in management strategy prior to the
development of conditions that detrimentally impact either
the agricultural productivity of the soil or the quality of the
groundwater.

A GIS characteristically provides a means of representing
the real world through integrated layers of spatial information.
To model NPS pollution within the context of a GIS, the spatial
heterogeneity of each transport parameter or variable of the
deterministic transport model is represented by layers of
spatial information formulating a three-dimensional distri-
bution. The three-dimensional spatial distribution of each
transport parameter/variable must be measured or estimated.
This creates a tremendous volume of spatially indexed
information due to the complex spatial heterogeneity ex-
hibited by the numerous physical, chemical, and biological
processes involved in solute transport through the vadose
zone.

Basic Components of Modeling NPS Pollutants with GIS.
In their simplest form, GIS-based environmental models are
comprised of three basic components (4): data, GIS, and
environmental model. An understanding of the application
of GIS to the modeling of NPS pollutants in the vadose zone
requires a cursory understanding of each component and
the interrelationship between these components.

(A) Data. All models require input data from which
simulated output is generated. The significant feature of
environmental models related to the simulation of NPS
pollutants is the spatial and temporal variability of the input
data.

The single greatest challenge to modeling NPS pollutants
is to obtain sufficient data to characterize the temporal and
spatial distribution with a knowledge of its uncertainty. Soil
is an extremely heterogeneous medium that exhibits con-
siderable spatial variability in many of its properties. The
physical, chemical, and biological properties that influence
the fate and movement of NPS pollutants in the vadose zone
vary tremendously over very short distances and often vary
independently of one another. Furthermore, virtually all of
the properties characterizing transport processes vary both
laterally and vertically. Maidment (5) insightfully points out
that the most limiting factor to hydrologic modeling is not
the ability to mathematically characterize the processes but
to accurately specify the values of model parameters and
input data.

Significance of Spatial Variability. The spatial variability
of soil has been the focus of numerous books (6-8), review
articles (9-14), and a compendium of Pedometrics-92
Conference papers (Geoderma, 1996, 60) ever since the classic
paper by Nielsen et al. (15) concerning the variability of field-
measured soil water properties.

The nature of soil variability is dependent on one’s
perspective or scale of resolution. For example, when viewed
from the moon, the spatial diversity of the earth’s surface
appears as land and water. Whereas, low-level aerial pho-
tography yields tonal patterns of soils, landforms, geomorphic
features, erosion, and vegetative patterns. If soil is observed
at still greater resolution and in vertical cross section, spatial
variability is seen in three dimensions as a succession of soil
horizons and features not evident at the soil surface.
Therefore, spatial variability can be recognized to varying
degrees within two or three dimensions at microscopic, plot,
field or landscape, regional, and global scales. Spatial
variation is recognized as a continuum from short-range to
long-range order.

Since the inception of the Soil Survey, the users of soil
maps, most noteably solute transport modelers, have desired
to know to what extent they could assume that all the soil
mapped as one class had equal potentialities. Users want
and need confidence limits, probabilities, and frequency
analyses on the composition of map units and information
on how inclusions within a given map unit influence
interpretations and behavior. The obvious question for a
soil scientist to ask is how many samples are needed to
characterize soil spatial variability? The response to this
question depends on the magnitude of variability within the
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population for the parameter in question and the probability
level placed on the confidence limits (10).

The following discussion utilizes the coefficient of variation
as a measure to compare soil property variation. The
coefficient of variation (% CV) is defined as sample standard
deviation expressed as a percentage of the sample mean.
Some of the input variables and parameters needed for solute
transport models of the vadose zone are dominated by the
bulk characteristics of the solid matrix of the soil; conse-
quently, the spatial variability of these properties are relatively
small, which reflects the uniformity of soil genesis processes
(14). These properties include porosity, bulk density, field
capacity (i.e., soil-water content after free drainage has
occurred, approximately 0.3 bar), and wilting point (i.e., soil-
water content when plants begin to wilt, approximately 15
bar). Characteristically, these variables/parameters are as-
sociated more often with functional, deterministic models of
solute transport (see Models subsection). Properties domi-
nated by the bulk characteristics of the soil matrix are low to
moderate in variability irrespective of field size or soil type.
This is reflected in the low coefficients of variation as tabulated
by Jury (14): porosity (CV ) 7-11%), bulk density (CV )
3-26%), 0.1 bar soil-water content (CV ) 4-20%), and 15 bar
soil-water content (CV ) 14-45%). In contrast, water
transport parameters including saturated hydraulic conduc-
tivity, infiltration rate, and hydraulic conductivity-water
content, or hydraulic conductivity-matric potential relations
are characterized by a high variability of at least 100% or
greater. These parameters are associated most often with
mechanistic models of solute transport (see Models subsec-
tion). Finally, the calibration and validation of NPS pollutant
models depend upon the comparison of predicted and
measured solute concentrations. Solute transport experi-
ments tabulated by Jury (14) have shown coefficients of
variation of 60-130% for observed and simulated solute
concentrations.

Not only do many model input variables and parameters
vary considerably across a field, but substantial local-scale
variability can also be found. It is common to find 50% of
the variation in many soil properties within a 1-2 m radius.
Local-scale variability occurs because soils vary significantly
from one location to the next in their structural properties,
textural composition, and mineralogical constituents. Hu-
man influence also has considerable effect. For instance, on
agricultural lands salinity can vary significantly over short
distances merely due to variations in surface topography and
how water infiltrates into the soil. On soils with bed-furrow
flood irrigation, the salinity within the bed can be an order
of magnitude higher than the salinity below the furrow, which
is just a few centimeters away. The increased salinity is due
to the lateral and upward flow of irrigation water into the bed
from the furrow that causes the accumulation of salts in the
bed, while the salts directly below the furrow are continuously
leached downward.

The local-scale structure is a feature that must be
considered in relation to its influence upon the overall scale
of interest. In other words, are local-scale influences in
relation to the dominant processes of the “big picture”
inconsequential or must they be taken into account? This is
a relevant question useful in determining whether a sophis-
ticated mechanistic or a simple functional model should be
applied to a given NPS pollutant problem. Qualitatively, it
is recognized that as the spatial scale increases, the complex
local patterns of solute transport are attenuated and are
dominated by macroscale characteristics. Furthermore, a
knowledge of the local-scale structure not only is needed for
model discrimination but also is of value in estimating the
minimum volume of the soil sample necessary to represent
a property at a given location. This will allow an estimation
of the minimum spatial scale at which the field-scale
parameters dominate solute transport behavior.

The scale of the averaging process becomes very important.
Replicated measurements of representative variables/pa-
rameters where large field areas are involved must be
substantial enough so that their mean values give a repre-
sentative average. The type of model, functional or mecha-
nistic, can be a factor in determining the scale of the averaging
process. Table 1, which was originally presented by Jury (14),
shows sample sizes necessary to have at least a 95% probability
of detecting a relative change of 20, 40, and 100% in the value
of the mean of various field-scale solute transport model
parameters when using a one-sample two-tailed t-test with
a probability of type 1 error set at a ) 5%. The last column,
which has been added to show whether the parameter is a
capacity or rate parameter, indicates the type of model,
functional or mechanistic (see Models subsection), with which
the parameter is associated. Capacity parameters are found
in functional models, while rate parameters are associated
with mechanistic models. Table 1 clearly shows that when
using functional models of solute transport the sample size
necessary to represent the parameters is significantly less
than for mechanistic models. Furthermore, the uncertainty
of the measurement as indicated by the sample variance is
as important as the mean value because it indicates the
precision of the mean and uniformity of the measurement.
Because most models of NPS pollutants in the vadose zone
are one-dimensional, uniformity is particularly significant to
illustrate the extent of validity of the assumption of one
dimensionality for a defined volume of soil.

There is a need to quantify soil variability and to determine
the scale or scales of its occurrence. Such information is
increasingly needed for modeling of water flow and con-
taminant transport in GIS applications and for environmental
impact assessment. Different approaches have been pro-
posed for quantifying variability in soil map unit delineations.
Traditionally, map unit composition has been quantified by
transecting selected delineations of the map unit and
determining at each point on the transect whether or not the

TABLE 1. Sample Sizes Required for a 95% Probability of Detecting Change of 20, 40, and 100% in Mean of Solute Transport
Parameters Using t-Test with r ) 5% (14)a

no. of samples

parameter
no. of

studies 20% 40% 100%
av

CV ( SD
capacity or

rate parameter

bulk density or porosity 13 6 10 ( 6 capacity
% sand or clay 10 28 9 28 ( 18 capacity
0.1 bar soil-water content 4 9 14 ( 7 capacity
15 bar soil-water content 5 23 7 25 ( 14 capacity
Ksat 13 502 127 22 124 ( 71 rate
infiltration rate content 8 135 36 8 64 ( 26 rate
K(θ) 4 997 251 442 25 ( 14 rate
ponded solute velocity 1 1,225 308 51 194 rate
unsaturated solute velocity 5 127 33 7 62 ( 9 rate

a Ksat is the saturated hydraulic conductivity. K(θ) is the unsaturated hydraulic conductivity as a function of water content θ.
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soil is the same as or similar to the selected series. Confidence
intervals were calculated using either the Student’s t-
distribution or a binomial method (16). The major advantage
of the t-statistic for calculating map composition is that it
allows an estimate of the amount of variability within
delineations, provided that more than one set of samples is
taken for each delineation, as well as the amount of variability
between delineations. The primary disadvantage of this
approach is that it can result in biased estimates if care is not
taken to account for differences in the size of the delineations,
and the associated difference is the number of samples taken
within each delineation. Care should be taken to ensure that
the sampling density is the same for all delineations.

Although the two methods just described have been the
most commonly used in the past, the recent proposed use
of geostatistical methods (17) and fuzzy set theory (18-22)
to incorporate variability and imprecision, respectively, into
soil map unit delineations has gained recognition and favor.
The obvious advantage of using geostatistics is that it not
only provides an estimate of a value of a property at a given
point or over a given area but also provides an estimate of
the error associated with that estimated value. However, there
are disadvantages that have precluded its routine applica-
tion: (1) the method is sample intensive, requiring a large
number of samples within the area being described to
accurately estimate the semivariogram, and (2) the method
is site specific, so the results have limited use outside of the
sampled area. Geostatistics are useful in characterizing
variability that exists due to random processes within the
spatial system, and hence statistical and probabilistic models
are appropriate. However, there are certain aspects associated
with variability (i.e., imprecision or vagueness in data) that
cannot be attributed to randomness whether due to com-
plexity, missing information, imprecision, and/or the use of
natural language. Because soil variation is more continuous
than discrete and consequently calls for a continuous
approach, fuzzy set theory (23) offers an appropriate means
of modeling the imprecision or vagueness in a continuous
system by allowing the matching of membership on a
continuous scale rather than on a Boolean binary or an integer
scale. Fuzzy set theory is a generalization of classical Boolean
algebra to situations where zones of gradual transition divide
classes rather than conventional crisp boundaries. Fuzzy sets
are especially useful when insufficient data exist to charac-
terize variability using standard statistical measures (e.g.,
mean standard deviation and distribution type). The central
concept of fuzzy set theory is the membership function. The
membership function is a mathematical relationship that
defines the grade of membership with 1 representing full
membership, 0 representing nonmembership, and a suitable
function defining the flexible membership grades between 0
and 1. Aside from the representation of imprecision occurring
within a map unit, fuzzy set theory also has been applied to
represent the imprecision of boundary location and the
gradual changes that actually occur between map unit
boundaries on thematic maps (24).

The implications of soil and climatic variability on broad-
scale modeling of NPS pollutants has been studied by Jury
and Gruber (25), Foussereau et al. (26), and Wilson et al. (27).
The findings of Jury and Gruber show that soil and climatic
variability can introduce a small probability that some mass
of even relatively immobile NPS pollutant will migrate below
the soil surface even when the projected mass is negligible
as determined from models neglecting variability by using
average values for soil and climatic properties. This is
significant in lieu of the fact that some regulatory decisions
have established a compliance surface below which pesticides
may not migrate (28). Foussereau et al. (26) demonstrated
a means of replicating soil variability by using bootstrapping
to generate pseudo-profiles of soils from pedon characteriza-
tion data. Their approach permitted an assessment of the

uncertanity associated with model output due to the the
variability of soil input data. Wilson et al. (27) explored a
means of capturing real-world soil variability through the
use of existing databases (i.e., the USDA-NRCS State Soil
Geographic Database, STATSGO; the county-level Soil Survey
Geographic Database, SSURGO; and the Montana Agricultural
Potential System, MAPS). Their findings revealed that the
higher resolution of the SSURGO database was needed to
identify those areas where potential chemical applications
are likely to contaminate groundwater.

Though not as extensively studied as the spatial variability
of soil, the aspect of temporal variability particularly of soil
hydraulic properties is of concern. Temporal variation is
attributed to both intrinsic factors (i.e., natural processes)
such as freezing and thawing, root growth and exudates,
wetting and drying cycles, carbon turnover and biological
activity and extrinsic factors (i.e., man-related activities) such
as tillage operations. Temporal changes have been dem-
onstrated to occur for total porosity (29, 30), bulk density (29,
30), water retention (29, 31, 32), saturated hydraulic con-
ductivity (30), macroporosity (29, 33, 34), and infiltration (35-
37). Tillage affects both the magnitude and the variability of
soil properties because it physically disrupts the stucture of
the soil and causes changes in water and solute flow patterns,
which may change again with time as soil setttles and
continuous macropores develop through active soil biota and/
or physical processes of nature (e.g., freezing and thawing,
wetting and drying). To handle temporal data within existing
soil survey databases, Grossman and Pringle (38) provided a
description of a record to join together the use and time
invariant information from soil survey documentation with
use-dependent temporal quanitities. From the GIS stand-
point, Langran (39) reviewed temporal research in information
processing, contrasted various proposed temporal designs,
and summarized the problem of adapting it to GIS require-
ments.

Sources of Data. The thirst for parameter and input data
by models that simulate NPS pollutants in the vadose zone
is met from three sources: (1) measurement methods, (2)
estimation methods, and (3) existing databases. Each source
of data carries distinct advantages and limitations.

(A) Measurement Methods. A review of current physical
measurements to determine flow-related properties of sub-
surface porous media and soil physical properties is provided
by Dane and Molz (40) and Topp et al. (41), respectively. The
measurement of variables and parameters related to solute
transport along with characterization of initial and boundary
conditions necessary for model simulation, calibration, and
validation constitutes a considerable investment of time and
labor because of the tremendous volume of data required.
Although direct measurement of transport parameters and
variables is probably the most reliable means of obtaining
accurate information for modeling purposes, it is also the
most labor intensive and costly. A quick and easy means of
obtaining these measurements is crucial to the cost-effective
modeling of NPS pollutants. Remote sensing and non-
invasive techniques potentially offer the most cost-effective
means of measuring crucial transport-related data.

Corwin (42) provides a cursory review of some of the
instrumental techniques recently developed for the remote/
non-invasive measurement of variables and parameters found
in transport models for the vadose zone. Table 2 shows a
summary of some of the methods currently in use and the
parameters they have been used to study. Even though
considerable progress has been made over the past decade
in the area of remote sensing, Corwin (42) concluded that
“the array of instrumentation needed to measure all the
parameters and variables in even the simplest of transport
models for the vadose zone is not available and in most cases
is not even on the drawing board”; consequently, “the greatest
progress [in the modeling of NPS pollutants] needs to be
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made in the area of instrumentation”. Aside from the fact
that remote sensing/non-invasive methods are still in their
infancy, in most cases the parameters measured are often
not directly applicable to solute transport models. For
instance, the use of electromagnetic induction to measure
soil salinity is not a direct measure of salinity in the soil
solution, but rather measures the bulk electrical conductivity
of the soil including the conductivity of both the solid and
liquid phases.

(B) Estimation Methods. The inability of remote mea-
surement techniques and instrumentation to meet the
demand for spatial and temporal input data needed by NPS
pollutant models has resulted in the development of transport
parameter estimation techniques that are based upon the
formulation of transfer functions.

Transfer functions relate readily-available and easy-to-
measure soil properties to more complex transport variables/
parameters needed for simulation. Table 3 provides a
referenced list of the estimation methods for many of the
commonly used parameters in solute transport models of

the vadose zone. The most common of the transfer functions,
the pedo-transfer function (PTF), uses particle-size distribu-
tion, bulk density, and soil organic-carbon content to yield
soil-water retention or unsaturated hydraulic conductivity
functions (148). Rawls et al. (149) provides a review of soil-
water retention estimation methods. Reviews of methods of
estimating soil hydraulic parameters for unsaturated soils
have been written by van Genuchten and Nielsen (150), van
Genuchten et al. (151), and Timlin et al. (152).

PTFs have been developed to predict the hydraulic
characteristics of a textural class using more easily measured
soil data. However, PTFs are limited in accuracy. For
example, a recent evaluation of PTFs has shown that greater
than 90% of the variability of simulations for a map unit was
due to the variability in the estimated hydraulic parameters
with the PTFs, which brings the value of PTFs into question
(153).

Although estimation methods are cheap and ease to use,
their limited accuracy makes them less desirable than directly
measured data. Nonetheless, if measured data is not avail-

TABLE 2. Representative List of Remote Sensing and Non-invasive Techniques Used To Study Properties and Parameters Useful in
Solute Transport Models for Vadose Zone

measurement method property or parameter studied cited refs

Geophysical resistivity methods: salinity 43-50
electromagnetic induction soil-water content 51, 52

saturated hydraulic conductivity 53
clay content 54
depth to claypan 55, 56
herbicide partition coefficients 57

electrical resistivity tomography water flow in fractures 58
aerial photography (B&W and color) geomorphological and structural details 59-61
X-ray tomography soil bulk density 62-64

soil-water content
ground-penetrating radar preferential flow paths 65
magnetic resonance imaging water flow paths 66
microwaves surface soil moisture 67, 68-72
multispectral scans (SPOT & Landsat TM) textural variation 73
thermal infrared surface temperature for soil moisture and

evapotranspiration estimation
74, 75

advanced very high resolution radiometry
(AVHRR)

canopy resistance, albedo, leaf area index
and fraction of vegetative cover for evapotranspiration

76

TABLE 3. Referenced List of Parameter Estimation Methods for Common Parameters Used in Solute Transport Models for
Vadose Zone

estimated parameter cited refs

soils parameters
bulk density 77, 78
diffusion coefficients 79
effective porosity 80
field capacity 78, 80-83
hydraulic conductivity (K) vs matric potential (h) 84-106
hydrodynamic dispersion 107-111
organic matter 112
pore water velocity 107-111
residual saturation 80
saturated hydraulic conductivity (Ksat) 80, 83, 113-117
total porosity 80
water content (θ) vs matric potential (h) 77, 80, 81, 84, 85, 89, 92, 94, 97, 98, 106, 115, 118-133
wilting point 78, 80-83, 119, 134, 135
volatilization rate 79

chemical parameters
cation-exchange capacity 135, 136
partition coefficient 78, 79, 137-145
pesticide decay rates 79, 107, 138, 140, 146
plant uptake 78

crop parameters and data
emergence and maturity 147
maximum root zone depth 78

hydrologic parameter
minimun evaporation depth 78
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able, then estimations using transfer functions are usually
the next best alternative.

(C) Existing Soils Databases. In most instances, limited
resources do not permit the measurement or even estimation
of needed input or parameter data. In these instances, the
use of existing soil databases is crucial. SSURGO, STATSGO,
and NATSGO are soil databases for the United States that are
available from the Natural Resource Conservation Service,
NRCS (see Table 4). SSURGO (Soil Survey Geographical
Database; map scale ranges from 1:12 000 to 1:63 360) is a
county-level database, and it is the most detailed GIS database
available from NRCS. STATSGO (State Soil Geographical
Database; map scale 1:250 000) is the state-level database
designed for state, large watershed and small river basin
purposes. The structural hierarchy of the STATSGO database
is shown for the purpose of illustration in Figure 1. NATSGO
(National Soil Geographical Database; map scale 1:7 500 000)

is the national soil database whose map units are defined by
major land resource area (MLRA) and land resource region
(LRR) boundaries. Even though considerable data are avail-
able through existing databases, most soil databases do not
meet minimum data requirements for many of the distributed-
parameter models used for NPS pollutants in the vadose zone
nor do they provide useful statistical information concerning
the uncertainty of the soil property data (155); consequently,
there is a need for a re-evaluation of the types of information
collected in soil surveys to meet the quantitative requirements
of environmental and agricultural management models (156).
An excellent example of the use of existing data sources in
a GIS-based solute transport modeling application is the
recent work of Wilson et al. (27). Table 4 provides a list of
some of the existing databases.

(B) GIS. A GIS is defined by Goodchild (157) as a “general-
purpose technology for handling geographic data in digital
form with the following capabilities: (1) the ability to
preprocess data from large stores into a form suitable for
analysis (reformatting, change of projection, resampling, and
generalization), (2) direct support for analysis and modeling,
and (3) postprocessing of results (reformatting, tabulation,
report generation, and mapping)”. Even more recently, at
the January 1996 NCGIA Conference in Santa Fe, NM,
Goodchild is quoted as saying that GIS has come to mean
“the wide range of activities within the broad rubric of digital
geographic information” (158). This broadened definition
reflects the rapidly expanding capabilities and applications
of GIS. In the context of NPS pollutant modeling, a GIS is a
tool used to characterize the full information content of the
spatially variable data required by solute transport models.
GIS is characterized by its capability to integrate layers of
spatially-oriented information. The advantages of GIS in its

TABLE 4. List of Some Existing Databases for Use in Modeling NPS Pollutants with GIS

database source description

soils databases:
SOTER ISRICa World Soils and Terrain Digital Database: global-scale database of soils,

terrain, climate, vegetation, and land use data; scale 1:1 000 000
NATSGO USDA-NRCSb,c National Soil Geographic database: national-level soils database of USA;

scale 1:7 500 000; application: national, regional, and multi-state resource
appraisal, planning, and monitoring; linked to Soil Information Record
(SIR) database for soil property data; soil mapping units contain many
components with soil properties reflecting the percentage of the map unit
having the queried properties

STATSGO USDA-NRCSb,d State Soil Geographic database: state-level soils database of USA; scale
1:250 000; application: state and regional studies of large watersheds, small
river basins; linked to SIR; map units consist of 1-21 components with each
component consisting of up to 25 physical and chemical properties

SSURGO USDA-NRCSb,e Soil Survey Geographic database: county-level (most detailed) soils database
of USA; scale 1:12 000 to 1:63 360; duplicate of original soil survey maps;
application: resource planning and management of private property,
townships, and counties; linked to Map Unit Interpretation (MUIR) database
for soil attribute data; map units consist of 1-3 components including
over 25 physical and chemical soil properties

meteorologic databases:
NOAA weather station data comprised of daily rainfall, daily min/max temperature,

daily average temperature, relative humidity, etc.
SNOTEL USDA-NRCSf daily snow and precipitation amounts at specific locations within specified

states and regions
miscellaneous databases:

CIMIS California Dept. of
Water Resourcesg

seasonal crop evapotranspiration estimates

UNSODA USDA-ARSh database of measured unsaturated hydraulic properties (water retention,
hydraulic conductivity, and soil water diffusivity) and basic soil properties
(particle-size distribution, bulk density, organic matter, etc.)

a Internation Soil Reference and Information Center, P.O. Box 353, 6700 AJ Wageningen, The Netherlands. b Technical Information: National Soil
Survey Center; USDA-ARS; Federal Bldg., Room 152, 100 Centennial Mall, North; Lincoln, NE 68508-3866; Phone: 402-437-4149. Data Source:
USDA-NRCS; National Cartography and Geospatial Center; 501 Felix St., Bldg. 23; P.O. Mail 6567; Fort Worth, TX 76115; Phone: 800-672-5559.
c Web site: http://www.ncg.nrcs.usda.gov/natsgo.html. d Web site: http://www.ncg.nrcs.usda.gov/statsgo.html. e Web site: http://www.ncg.nrcs.
usda.gov/ssurgo.html. f Web site: http://www.ncg.nrcs.usda.gov/water.html. g California Department of Water Resources, Office of Water Conservation,
P.O. Box 942836, Sacramento, CA 94236-0001. h F. J. Leij, USDA-ARS, U.S. Salinity Laboratory, 450 West Big Springs Rd., Riverside, CA 92507-4617.

FIGURE 1. Structural hierarchy of the STATSGO soil database (154).
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application to general spatial problems include “the ease of
data retrieval; ability to discover and display information
gained by testing interactions between phenomena; ability
to synthesize large amounts of data for spatial examination;
ability to make scale and projection changes, remove distor-
tions, and perform coordinate rotation and translation; and
the capability to discover and display spatial relationships
through the application of empirical and statistical models”
(159).

The use of geographic information systems in environ-
mental modeling has proliferated over the past two decades.
In its infancy GIS was primarily used to create inventories of
natural resources. However, over the past 10-15 years
modeling and analysis applications with GIS have become
more prevalent, especially in the environmental assessment
arena. In particular, the past half decade has produced three
NCGIA International Conferences on Integrating GIS and
Environmental Modeling that have resulted in three signifi-
cant texts covering the timely topic (160-162). The principal
benefit of coupling GIS to environmental models is to enable
the models to deal with large volumes of spatial data that
geographically anchor many environmental processes. This
is especially true of hydrologic processes. GIS applications
to hydrologic modeling have been used in the past most widely
and effectively by surface hydrologists and to a lesser extent
by groundwater hydrologists for NPS pollutant applications.
Only within the past decade have soil scientists begun to
utilize GIS as a tool in data organization and spatial
visualization of NPS pollution model simulation. Recently,
emphasis has been placed upon the application of GIS to
NPS pollutant problems associated specifically with the
vadose zone. An example of the burgeoning interest in this
area is reflected in the papers presented at the 1995 SSSA
Bouyoucos Conference entitled “Applications of GIS to the
Modeling of Non-Point Source Pollutants in the Vadose Zone”.
This conference resulted in a compendium of papers pub-
lished in a special symposium section of the Journal of
Environmental Quality (163) and in the SSSA Special Pub-
lication Applications of GIS to the Modeling of Non-Point
Source Pollutants in the Vadose Zone (164).

Coupling GIS to an Environmental Model. Currently, no
generalized GIS system has the data representation flexibility
for space and time together with the algorithmic capability
needed to construct process-based models internally; con-
sequently, environmental models and GIS must be coupled.
There are a spectrum of strategies for linking models to GIS.
A continuum exists ranging from loose through tight coupling
to an embedded system approach in which the GIS and the
model are fully-integrated into a single software system (Figure
2). A loose coupling involves data transfer from one system
to another by storage of data in one system and subsequent
reading of the data by the other. For example, the GIS could
create external text files consisting of input data for the model
and, possibly at some later time, the model could read these
files and perform the necessary calculations. The important
characteristic of loose coupling is the separate functionality
of the programs that implement the GIS and those imple-

menting the models. A majority of the applications described
in the literature represent this approach because it requires
little software modification. Usually, only the file formats of
the corresponding input and output routines require changes.
In tight coupling, the data management is integrated into the
system. Characteristically, a tight coupling will provide a
common user interface for both the GIS and the model, and
the information sharing between the respective components
is transparent. Thus, the tightly-coupled model and the GIS
must share the same database (Figure 2). For certain tightly-
coupled models, transactions between the model and the
database are handled separately from the transactions
controlled by the GIS (165). In this situation, a possibility of
conflicts arises if the model is run while the GIS is also
accessing the same data. This problem can be avoided by
implementing software control of the environmental model
within the GIS. As the degree of coupling between the GIS
and the model increases to the point where the model’s
functions are essentially part of the built-in functionality of
the GIS, then the model is termed embedded (Figure 2). An
example would be the RAISON model that integrated a GIS,
hydrologic models, a spreadsheet, and an expert system (166).
In embedded systems, the coupling of software components
occurs within a single application with shared memory rather
than sharing the database and a common interface. Embed-
ded systems require a substantial amount of time and money
to develop and may be difficult to modify when changes are
needed. There is unlikely to be any universally optimal
strategy as individual applications and resource constraints
will determine precise forms (167).

Another important operation in coupling a GIS to any
model is the categorization of data. For example, Vaughan
and Corwin (168) describe a coupled one-dimensional
functional model that requires parameter data (e.g., field
capacity) for each soil layer within each soil column, but the
model also requires boundary condition specifications at the
soil surface. If the boundary condition at the surface is
determined by irrigation delivery, for example, then boundary
conditions for all points within a single irrigated field would,
by assumption, be identical. Thus, storage of these boundary
condition data can be done for the entire field rather than
duplicating them for each location. The design of a spatial
database should be hierarchical and take advantage of
standard procedures to eliminate any unnecessary duplication
(169).

(C) Models. By definition, mathematical models integrate
existing knowledge into a framework of rules, equations, and
relationships for the purpose of quantifying how a system
behaves (170). As long as models are applied over the range
of conditions from which they were initially developed, they
serve as a useful tool for prognostication. Models can range
in complexity from the simplest empirical equation to
complex sets of partial differential equations that are only
solvable with numerical approximation techniques.

Since the 1950s, numerous models have been developed
to simulate the one-, two-, and three-dimensional movement
of solutes through the vadose zone. Addiscott and Wagenet
(171) discussed a categorization of these models based upon
conceptual approach. Their categorization distinguished
between deterministic and stochastic and between mecha-
nistic and functional. According to Addiscott and Wagenet
(171), the key distinction between deterministic and stochastic
models is that deterministic models “presume that a system
or process operates such that the occurrence of a given set
of events leads to a uniquely definable outcome” while
stochastic models “presuppose the outcome to be uncertain”.
Stochastic models consider the statistical credibility of both
input conditions and model predictions, whereas determin-
istic models ignore any uncertainties in their formulation.
The second level of model distinction is between mechanistic
and functional models. As stated by Addiscott and Wagenet

FIGURE 2. Three of the most common types of coupling of GIS to
an environmental model: (a) loose, (b) tight, and (c) embedded.
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(171) “mechanistic is taken [here] to imply that the model
incorporates the most fundamental mechanisms of the
process, as presently understood”, whereas the term func-
tional is used for “models that incorporate simplified treat-
ments of solute and water flow and make no claim to
fundamentality but do thereby require less input data and
computer expertise for use”.

Because of lateral and vertical variation of soil, it is not
reasonable to expect that three-dimensional models capable
of describing point-to-point variability could be calibrated
by any conceivable combination of measurements at field
scales (i.e., hundreds or thousands of hectares); consequently,
field-scale models of processes in which large surface and
subsurface areas are treated relatively uniformly will need to
be one-dimensional (14). For this reason, the vast majority
of models that have been coupled to a GIS to simulate NPS
pollutants in the vadose zone have been one-dimensional.
Because modeling NPS pollutants in the vadose zone is a
spatial problem well suited for the integration of a deter-
ministic solute transport model with a GIS, deterministic
models of solute transport have almost exclusively been used
in combination with GIS to simulate NPS pollutants.

GIS-Based Deterministic Models for NPS Pollution Simula-
tion. Corwin (42) provided a review of GIS applications of
one-dimensional, deterministic solute transport models to
field-, basin- and regional-scale assessment of NPS pollutants
in the vadose zone. Prior to the review by Corwin (42), Poiani
and Bedford (172) presented a review of selected GIS-based
NPS modeling studies that emphasized wetlands applications.
Their review included a particularly useful table summarizing
each GIS-based model. Tables 5-7 are an enhancement of
the original table presented by Poiani and Bedford, but are
restricted to a summarization of GIS-based NPS pollutant
models for the vadose zone.

Three categories of deterministic models have been
coupled to GIS to simulate NPS pollution in the vadose zone:
regression models, overlay and index models, and transient-
state solute transport models. Regression models (Table 5)
have generally used multiple linear regression techniques to
relate various causative factors to the presence of a NPS
pollutant. Various soil properties or conditions are related
to groundwater vulnerability or to the accumulation of a solute
in the soil root zone (173-176). For instance, Corwin et al.
(173) related soil salinization factors (i.e., soil permeability,
irrigation efficiency, and groundwater quality) to the devel-
opment of salinity in the root zone for the entire Wellton-
Mohawk Irrigation District (170 mi2). More recently, logistic
regression techniques have been utilized to identify areas of
groundwater vulnerability to pesticides (175) and the devel-
opment of soil salinity (176). Overlay and index models (Table
6) refer to those models that compute an index of NPS
pollutant mobility from either a simple functional model of
steady-state solute transport (177-184) or a steady-state
mechanistic model (187). Two types of overlay and index
models have been developed: property-based and process-
based. Property-based index models are established upon
hydrogeologic setting (e.g., DRASTIC) or NPS pollutant
properties (e.g., GUS). Process-based index models are
founded upon the characterization of transport processes

(e.g., Rao’s Attenuation Factor model). Overlay and index
models have been used largely to assess groundwater
pollution vulnerability to pesticides and nitrates. Transient-
state, process-based solute transport models (Table 7) include
deterministic models capable of handling the movement of
a pollutant in a dynamic flow system. Transient-state,
process-based models describe some or all of the processes
involved in solute transport in the vadose zone: water flow,
solute transport, chemical reactions (adsorption-desorption,
exchange, dissolution, precipitation, etc.), root growth, plant-
water uptake, vapor phase flow, degradation, and dispersion/
diffusion. The most recent progress has occurred in the
coupling of transient-state solute transport models to GIS
(194-198, 202, 209, 210).

GIS-Based Stochastic Models for NPS Pollution Simulation.
Jury (14) pointed out that the difficulty of constructing a three-
dimensional model of chemical transport as a consequence
of field variability has two significant implications: (1) any
hope of attempting to estimate a continuous spatial pattern
of chemical transport must be abandoned, and (2) there exists
a possibility of extreme deviations from average movement
so that significant concentrations of chemical may flow within
relatively small fractions of the total cross-sectional area which
may be nearly impossible to detect from point measurements.
The latter implication has fostered the development of
stochastic solute transport models for the vadose zone as
opposed to deterministic models.

Two distinct stochastic approaches are currently in use
for dealing with the spatial variability encountered in model-
ing NPS pollutants in the vadose zone: geometric scaling
and regionalized variables. Jury (14) indicates that geometric
scaling uses specific “standardized variables to scale the
differential equations describing transport and relates the
standardized variables to some measurable or definable
property of each local site of a heterogeneous field”. Once
the variables are defined, the onerous task of characterizing
the variability is reduced to determining the statistical and
spatial distribution of these scaling parameters. In contrast,
Jury (14) explains that the regionalized variable approach
regards the “various parameters relevant to a field-wide
description of transport as random variables characterized
by a mean value and a randomly fluctuating stochastic
component”.

In comparison to deterministic models, the coupling of
a stochastic solute transport model to GIS is relatively
unexplored. In a recent paper discussing the potential
compatibility of stochastic transport models with GIS, Jury
(213) suggested that stochastic-convective stream-tube mod-
eling seems the most compatible with GIS because it “utilizes
a relatively simple local process driven by parameters that
might be associated with soil morphological features, and
could be integrated up to a large scale by simple arithmetic
averaging over the local sites”. A stochastic stream-tube
model is made up of parallel, non-interacting one-dimen-
sional soil columns whose properties are locally homogeneous
but vary from one soil column to the next. The collection of
all stream tubes constitutes the field-, basin-, or regional-
scale area being represented. This approach is in essence
the same approach that has been undertaken in the past

TABLE 5. General Characteristics of Regression Type of GIS-Based NPS Pollutant Models of Vadose Zonea

cited ref model name GIS pollutants focus of study area (size)

Corwin et al.
(173)

not specified ARC/INFO salinity (TDS) salinization potential Wellton-Mohawk Irrigation Dist., AZ
(170 mi2)

Skop (174) not specified not specified nitrate nitrate leaching potential Denmark (42 900 km2)
Teso et al. (175) PSCLR ARC/INFO pesticides groundwater pollution

potential
San Joaquin Val., CA (15 298 mi2)

Wang et al. (176) not specified ARC/INFO salinity salinization potential Broadview Water District, CA (9.25 mi2)
a Abbreviations: AZ, Arizona; CA, California; TDS, total dissolved solids.
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where deterministic piston-flow local transport models have
been coupled to soil survey information only now there is an
associated stochastic component of information. Jury (213)
warns that the challenge of this approach will be “to develop
a reasonable local-scale model whose parameters can be
related to identifiable local-scale features”.

Role of Geostatistics in the Modeling Process. Geosta-
tistics can provide support for the modeling process by (1)
determination of the suitability of a particular data set for use
as input data for a model; (2) estimation of data values required
by models at locations where actual measured values are not
available; and (3) post-processing of computed results (Figure
3). The GIS data pool provides data for both geostatistical
analysis and modeling. Results of either geostatistical
analyses or modeling are also returned to the data pool (Figure
3).

Tools for preliminary statistical examination of spatial data
sets include h-scatterplots for analyzing actual data values
and indicator maps as gray-scale plots of standardized ranks
of the data (214). The GIS can support these operations by
providing data selection and sorting in addition to map-
making. These preliminary analyses assist in discovering
features of the data such as spatial trends, spatial correlation,
and specific data values that appear outside the general
grouping of the data and may be questionable (termed erratic).
For example, sets of h-scatterplots at varying values of h (the
distance between points) show variation of spatial correlation
with distance by plotting of data pairs for each distance. Erratic
data values are quite noticeable in such plots. For analysis
of relationships between different types of data, the data can
be ranked using a uniform score transform for plotting and
calculation of the rank correlation coefficient, which can be
compared to the standard correlation coefficient. These two
statistics are separate measures of the correlation between
two types of data. They can aid in revealing potential
influences of erratic values because the rank correlation
coefficient is less sensitive to such values (215). Selective
removal of erratic values from the data generates modified
data sets for study using more refined geostatistical methods
that are applied to all such data sets to assess the importance
that the erratic data have for any conclusions or decisions.

Among the linear geostatistical methods of analyzing
spatial data, a common tool is the experimental semivario-
gram (from now on referred to simply as semivariogram),
which represents the effect of distance between sampling
points on variability (216). There are several related measures
of spatial correlation such as plots of spatial covariance,
correlograms, and indicator semivariograms (217). A semi-
variogram indicates how the mean-squared variation between
pairs of data values changes with spacing between the two
measurement locations. Ideally, a semivariogram will show
zero variability at a sample spacing of zero and semivariance
increasing with increasing spacing up to a point where it
levels off at a sill value. Real data seldom have such ideal
behavior; normally there is a finite, but difficult to quantify,

semivariance at a spacing of zero known as the nugget effect.
Also, the sill value is often not constant because, at continually
greater spacing, new soil types are encountered causing
further increases in the variation between pairs of measured
values. This description of the semivariogram assumes that
there is no directional dependence. In fact, such is probably
not the case, and computation of the semivariogram should
account for directionality by taking data pairs connected by
lines that lie within some angular tolerance of a specified
direction. Taking as principal directions the set of perpen-
dicular directions that show the greatest difference between
their respective semivariograms usually gives a reasonable
representation of the directional character of the data.

Modeling of the spatial covariance is necessary for
estimation of data values at unsampled points using any of
the kriging-type techniques. The spatial covariances are
obtained from modeling semivariograms using, for example,
the spherical, exponential, or power models. Anisotropy can
also be represented by defining an azimuth angle for rotation
of the principal axes from north in addition to providing model
parameters for each of the two principal directions (217).

Deterministic water flow and solute transport models
require a complete data set at every site where simulations
will be performed. However, sampling for measurement of
data required by the model often cannot be carried out so
extensively. Thus, flow and transport modeling in a GIS
context usually requires local estimation of at least some of
the input data. One approach is through PTFs as previously
described. Alternatively, geostatistical techniques such as
kriging can be employed in situations where the density of
existing data points is sufficient to make spatial interpolation
a practical method for estimating a parameter. Advantages
of estimation by kriging techniques are as follows: (1) the
spatial structure of the data, as represented by semivariogram
modeling, will be integrated into the estimation; (2) for
locations where data points are known, kriging estimates the
data value exactly; (3) the data provide the starting point for
determining the weighting as compared to other methods
such as inverse-distance-squared weighting that rely on an
assumption (218). Kriging estimates demand that the data
conform to the requirements of second-order stationarity,
meaning the semivariogram is independent of location, and
there is no regional trend in the data (216, 219). For estimation
at unknown points based on a normal distribution of data for
a single parameter, the ordinary point kriging method is
appropriate. If there are two or more parameters that are
cross-correlated, then cokriging may make a more accurate
estimation. Both the kriging and cokriging methods require
preparation and modeling of semivariograms or some other
measure of spatial covariance. Cokriging also requires
computation of the cross-semivariogram and modeling of
the individual semivariograms and the cross-semivariogram
using a linear model of coregionalization (215, 220). A non-
Gaussian distribution can be handled either by a transforma-
tion or by disjunctive kriging or cokriging (221, 222). Also,
the sequential indicator simulation technique can handle non-
Gaussian data that consist of both hard and soft data sets
(223, 224). Measured values that are georeferenced are
considered hard data whereas ranges in the value of a property
such as those included in soil surveys are an example of soft
data. Given the difficulty in obtaining hard measurements
of soil properties, the sequential indicator simulation ap-
proach can substantially improve estimation through the
addition of soil survey data (223). One problem with
estimating soil properties from existing soil maps results from
the narrow lines indicating transitions between soil types.
Most transitions in soil type take place over a finite transition
zone, and semivariogram modeling of soil properties can be
improved by modeling only those data that are not located
within such a transition zone (225).

FIGURE 3. Data flow diagram showing how geostatistics interface
with the GIS database and model.
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Another possibility for generating data at unsampled
locations is stochastic simulation. A simulation generates
data values by drawing them randomly from a Gaussian
distribution. Methods include turning bands (226, 227),
spectral methods (228), sequential Gaussian simulation (217),
and matrix decomposition (229). A conditional simulation
ensures that those values are statistically consistent with a
set of measured data (the conditioning data). Non-Gaussian
distributions are common for many types of soil data, but
transformation of conditioning data from such distributions
into Gaussian form allows implementation of the simulation
methods (230). Unlike regression or kriging, which produce
a single estimation at unsampled points, stochastic simulation
can generate many data sets known as realizations. Deutsch
and Journel (217) advise “Inasmuch as a simulated realization
honors the data deemed important, it can be used as an
interpolated map for those applications where reproduction
of spatial features is more important than local accuracy".
For water flow and transport modeling, stochastic simulation
of input data is useful for studying the propagation of
uncertainty within the models. However, computational
demands of these models may preclude running such a
calculation for a large number of realizations. Some discretion
is necessary because stochastic simulation is a rapidly evolving
field, and some of the simulation methods have not yet been
extensively tested with real data.

Finally, geostatistics can assist in post-processing model
results. Maps are especially useful for representation of post-
processed data because non-specialists are often familiar with
interpreting maps whereas graphs and histograms frequently
require more detailed knowledge. A map could simply
represent computed values, for example, the TIN module of
ARC/INFO [ARC/INFO was designed by ESRI, 380 New York,
Redlands, CA 92373] can drape a surface representing
computed values over an irregularly spaced set of locations
(197). Kriging the computed data can estimate the results at
locations on a grid for mapmaking by raster GIS methods.
For example, a model calculation of CO2 flux through the soil
surface at points within an irrigated agricultural area was
kriged to obtain a gridded set of estimated values that was
plotted using the GRID module of ARC/INFO (165). Other
geostatistical techniques can be applied to model results. For
example, semivariograms of computed results might be
compared with those representing initial conditions to
determine whether the modeling is causing changes in the
spatial variability. The raster maps from GIS systems provide
a good way to plot data that represent a continuous surface
as is the case with many model results.

Environmental applications of geostatistics frequently
require more information than just spatial estimates of the
results of modeling. In a regulatory framework, one might
want a spatial estimate of the probability that the flux
concentration of a contaminant entering the groundwater
exceeds a trigger value. The application of soil treatments in
a precision farming operation could be locally contingent on
concentrations of specific chemical species in the soil falling
below an acceptable level. For these problems, the desired
result cannot be estimated from a linear combination of
surrounding values as in kriging. Considering the precision
farming example, the function that is needed will be zero in
all areas not requiring treatment but will need to specify
treatment quantity for the treatable areas. This kind of non-
linear function can be generated from weighted sums of the
indicator functions produced by disjunctive kriging or
cokriging (231). The conditional probability that a particular
value is exceeded is known as the point conditional probability
estimator and is also obtained from these indicator functions
(221, 222, 232-234). However, this point estimator should
be taken to apply to areas that are the same size as the sampled
area. For many decision-making applications, the size of the
area impacted by the decision is larger than the area

represented by a sample. Increasing the size of the affected
area requires a change of support, and computation of
conditional probabilities for such larger areas must be revised
to deal with block rather than point values (235, 236).

Scaling Considerations. The integration of GIS into solute
transport models of the vadose zone provides the ability to
dynamically describe NPS pollutant transport at a range of
spatial scales allowing the user to rapidly scale “up” and
“down”. However, this introduces incompatibilities be-
tweenthe model and data and raises basic questions regarding
(1) the compatibility of the model with input and validation
data and (2) the relevance of the model to the applied spatial
scale. Wagenet and Hutson (237) addressed the issue of scale
dependency and proposed three scale-related factors to
consider when applying GIS-based solute transport models
to the simulation of NPS pollutants in soils:

(1) The type of model (i.e., functional or mechanistic) must
consider the scale of application and the nature of the available
data at that scale.

(2) Sampling and measurement of input and validation
data must be spatially consistent with the model.

(3) Measurement and monitoring methods must be
relevant at the temporal domain being modeled.

A hierarchical depiction of the scales for the leaching of
NPS pollutants shows a range in scale from molecular to global
(Figure 4). Models of solute transport in the vadose zone
exist at all scales. Qualitatively speaking, as spatial scale
increases, the complex local patterns of solute transport are
attenuated and dominated by macroscale characteristics. For
this reason, mechanistic models are utilized more frequently
at the (i) to (i - 4) scales, while functional models are more
often applied to scales ranging from (i + 1) to (i + 6). The
stochastic application of deterministic models is found at
the (i + 1) scale, and stochastic models generally are used at
the (i + 1) and (i + 2) scales. Statistical models are found to
be applied most often at the larger scales, (i + 3) to (i + 6).
A complete discussion of the application of models at different
spatial and temporal scales is given by Wagenet (239).

The parameters and input variables found in functional
and mechanistic models reflect the scale of the application
of each category of model. Capacity parameters such as those
listed in Table 1 are generally associated with functional
models, while rate parameters are associated with mechanistic
models. Characteristically, capacity parameters are less
spatially variable than rate parameters and require fewer
samples to determine a representative value (see Table 1).
Generally speaking, sampling intensity requirements favor
the application of functional models at larger spatial scales.

Aside from sampling intensity, there is also the consid-
eration of the physical size of the sample volume used to

FIGURE 4. Organizational hierarchy of spatial scales pertinent to
NPS pollutant models (238).
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assess the value of the physical or chemical property. Sample
volume is an important scale issue with regard to measure-
ments used to develop input data or measurements needed
for model validation (240). As stated by Wagenet and Hutson
(237), “Until sampling and measurement approaches are
consistent in scale with the models being used at that scale,
our assessments of model performance will be plagued
byambiguity that arises from this lack of appreciation of scale-
dependency”.

The relevance of temporal domain is also a consideration
not to be overlooked. Larger spatial scales appear more
constant because the rapid dynamics of the lower scales are
disregarded (241). For this reason, time steps of functional
models can expand over days, such as the time between
irrigation or precipitation events, while the time steps of
mechanistic models characteristically extend over minutes.

Reliability of GIS-Based NPS Pollutant Models Based
upon Model and Data Uncertainties. The uncertainties
associated with assessing the vulnerability of groundwater to
point source and NPS pollutants are cogently discussed in
the National Research Council’s Ground Water Vulnerability
Assessment: Contamination Potential Under Conditions of
Uncertainty (242). The reliability of a model is determined
by the error associated with its simulated output and the
intended use of the simulated output. Error is inherent in
all models no matter how sophisticated or complex. There
are three sources of error inherent to all NPS pollutant models
(243): (i) model error, (ii) input error, and (iii) parameter
error. Model error results in the inability of a model to
simulate the given process, even with the correct input and
parameter estimates. Model error can be due to the
characteristic over-simplification of the complexities of the
actual processes described within the model. Input error is
the result of errors in the source terms (e.g., soil-water recharge
and chemical application rates). Input error can arise from
measurement, juxtaposition, and/or synchronization errors.
Input (or data) error is inherent not only in estimated
information but also in measured data as well; therefore,
uncertainty is associated with all data. Parameter error has
two possible connotations. For models requiring calibration,
parameter error usually is the result of model parameters
that are highly interdependent and non-unique. For models
with physically-based parameters, parameter error results
from an inability to represent aerial distributions on the basis
of a limited number of point measurements. The combina-
tion of input and parameter errors is reflected in the quality
of the model simulations (relative to ground truth) and in the
reliability of the simulations for use in making decisions. The
aggregation of model error, input error, and parameter error
is the simulation (or total) error. Simulation error is
complicated further, for multiple-process and comprehensive
models, by the propagation of error between model com-
ponents.

Different methods have been used to evaluate uncertainty
in NPS pollutant models. These methods fall into two distinct
categories: (i) sensitivity analysis, where the primary concern
is assessing the propagation of error between model com-
ponents; and (ii) uncertainty analysis, where the causes of
simulation uncertainty are the focus of concern. Uncertainty
analysis considers the inherent uncertainty in model input
and parameter information and the subsequent effect this
uncertainty has upon simulation results. Uncertainty analysis
can be carefully designed to uncover information shortfalls
and process misrepresentation. Sensitivity analysis, on the
other hand, makes no use of information related to the sources
or ranges of uncertainty in the model input, i.e., only
considering the sensitivity of the model outputs to slight
changes in an input variable/parameter. Uncertainty analysis
methods for estimating data uncertainty fall into two general
categories (244): (i) first-order variance propagation and (ii)
Monte Carlo methods.

First-order techniques were used by Loague and his co-
workers (e.g., refs 245-247) to characterize the impact of
data errors in assessments of pesticide leaching, by Khan and
Liang (180), for the Pearl Harbor Basin on the Hawaiian island
of Oahu. Loague and his co-workers (e.g., refs 248 and 249)
also characterized the impact of model error in the regional-
scale leaching assessments for the Pearl Harbor Basin. A
summary of the long-term effort to characterize simulation
error, for the Khan and Liang pesticide leaching assessments,
can be found in the recent review by Loague et al. (243). In
a related study, Loague (250) attempted to quantify the worth
of supplemental information in reducing the data error
uncertainties for the GIS-driven groundwater vulnerability
assessments for the Pearl Harbor Basin (also see ref 251). The
general idea here is to cast NPS pollution assessments in
terms of risk analysis (243). The cost of variance reduction
for NPS pollution assessment models is illustrated in Figure
5.

The typical parameter surface maps (e.g., soil survey maps)
used in NPS pollutant models are most often based upon
point value measurement averages that are extrapolated to
large unsampled regions without consideration for the
variability (uncertainty) in the measured data. The impact
of this is illustrated in Figure 6, where soil organic-carbon
content for the Pearl Harbor Basin is presented, based upon
extrapolation from soil taxonomy, for both mean estimates
of the data and with consideration of the variability in the
data. By not considering the variability in the data there is
obviously, as seen in Figure 6, tremendous opportunity for
error propagation (see ref 252).

The intended use of model simulations determines the
level of error that can be tolerated for the simulations to be
of value. There are generally three regional-scale uses for
GIS-based NPS pollutant models: (i) assessment of existing
conditions resulting from legacies, (ii) prediction of future
impacts resulting from ongoing or future activities, and (iii)
development of concepts for the design of future experiments
to improve the understanding of processes. An important
question to ask is whether the current generation of colored
maps made from NPS pollutant models, designed to address
(i)-(iii), are reliable enough for use in the decision-manage-
ment arena? Currently, the honest answer to this question
for (i) and (ii) is no, primarily because of uncertainties in
data; for (iii) the answer is yes. However, there is fantastic
potential for GIS-based NPS pollutant models to provide
useful insights into the assessment, remediation, and pre-
vention components of increasingly visible regional-scale
contamination problems.

The major problem in applying simulated NPS vulner-
ability assessments to real problems is that it has not been
possible to rigorously and unequivocally validate, based upon
field observations, any regional-scale earth science modeling
approach (e.g., refs 253 and 254). The model validation
problem is directly linked to the uncertainties, which can be
tremendous at regional scales, that are always associated with
simulation errors. It should be pointed out that performance
standards have not yet been established for any of the applied
problems that NPS pollutant models are used. Future NPS
simulation efforts will be greatly improved if well-defined
model testing protocols, including model performance stan-
dards, are established.

Complete model evaluation requires both operational and
scientific examination (255). The operational component of
model evaluation is the assessment of accuracy and precision.
Accuracy is the extent to which model-predicted values
approach a corresponding set of measured observations.
Precision is the degree to which model-predicted values
approach a linear function of measured observations. The
concept of scientific evaluation is the assessment of consis-
tency between model-predicted results and the prevailing
scientific theory (255). The concept of scientific evaluation
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is well suited to evaluating deterministic-conceptual and
stochastic-conceptual models; however, it is not appropriate
for deterministic-empirical or stochastic-empirical models.
The range of values over which established accuracy is
expected to vary is a confidence interval. The magnitude of
a confidence interval is a measure of reliability. The prob-
ability that a confidence interval is smaller or larger than
some value is a significance test. Both parametric and
nonparametric statistical procedures are available for sig-
nificance tests (255). Evaluation of an NPS pollutant model’s
performance should include both statistical criteria and
graphical displays (256). A combined assessment approach
can be useful for making comparative evaluations of model
performance between alternative/competing models.

There are several areas of concern related to uncertainty
in GIS-based NPS pollutant models and the simulation maps
they yield. A list of the guidelines addressing these concerns
is presented (243):

(a) The location of field measurements should be included
on all data overlay maps. Information imported from outside
the region of interest should be tagged as such.

(b) The method(s) used for data extrapolation to un-
sampled sites should be described. The use of spatial
interpolation techniques, such as geostatistics, will facilitate
the characterization of data uncertainties.

(c) The uncertainty in data overlay maps should be
presented as separate maps.

(d) The number of samples used to determine soil
characteristics at a given classification (e.g., order) should be
similar, relative to the size of the area being represented, for
each taxonomic category.

(e) The correlation between and within the soil and
chemical data sets should be considered to prevent redundant
uncertainties.

(f) The depth to groundwater or a realistic compliance
surface should be based upon field information and not set
to an unrealistic over-conservative value. Recharge areas for

critical aquifer systems must also be identified to facilitate
objective assessment of groundwater vulnerability.

(g) Serious consideration should be given to the grid size
used in GIS overlays relative to soil and recharge data. One
must also acknowledge that soils information accumulated
over many years for purposes other than regional-scale
groundwater vulnerability assessments will not always be
adequate; additional sampling and analysis will almost
certainly be required.

(h) Mobility indices and screening models used to generate
groundwater vulnerability maps should be subjected to
rigorous evaluation, based upon field observation and
comparisons with physics-based simulations of coupled fluid
flow and solute transport in unsaturated/saturated systems.

(i) Statistical criteria and graphical displays should be used
to quantitatively evaluate the performance of models used to
generate groundwater vulnerability assessments. The es-
tablishment of acceptable performance standards must be
addressed.

(j) Supplemental data collection should be based upon
reduction in assessment uncertainties and economic feasi-
bility.

(k) The spatial and temporal variability in recharge
(precipitation minus evapotranspiration) and land cover (a
reasonable surrogate for pesticide application rates and dates)
needs to be incorporated into groundwater vulnerability
assessments.

(l) The heterogeneity of near-surface soil/geologic columns
need to be accounted for in regional-scale groundwater
vulnerability assessments.

Where Is GIS-Based Modeling of NPS Pollutants
Headed?
Current trends in GIS-based NPS pollutant models involve
the integration of the previously discussed components and
analytical tools (i.e., measured/estimated/existing data, GIS,

FIGURE 5. Schematic illustration of the general relationship between the cost of variance reduction and the efficiency of GIS-based NPS
pollution models.
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FIGURE 6. Soil organic carbon for the Pearl Harbor Basin based on soil classification at the order taxonomy category (243): (a) mean, (b)
mean plus one standard deviation, (c) mean minus one standard deviation. Color key: light blue, 3.0% e foc; dark blue, 2.0% < foc < 3.0%;
yellow, 1.0% < foc e 2.0%; red, foc e 1.0%.
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solute transport model, uncertainty analysis, geostatistics,
and fuzzy set theory) into a system (Figure 7). Future trends
in the development of GIS-based NPS pollutant models are
best viewed from the perspective of the basic components:
data, GIS, and solute transport modeling.

Developments in GIS related specifically to environmental
modeling are most likely to occur in three areas: enhanced
spatial servers, enhanced desktop GIS technology, and
embedded spatial analysis and GIS technology. Enhanced
spatial servers resting on extended relational database
management systems (RDBMSs) are needed as a means by
which the vast volumes of data necessary as input into the
models can be efficiently supplied to end users. Enhanced
desktop GIS technology, such as ESRIs commercially available
ArcView [ArcView was designed by ESRI, 380 New York,
Redlands, CA 92373], will enable users to customize a user-
friendly GIS to fit their specific application. Finally, more
embedded spatial analysis and GIS technology will be
incorporated within NPS pollutant models, or alternatively,
advanced modeling and simulation capabilities will be
embedded in GIS to create an integrated, stand-alone
application package.

Historically, the majority of regional-scale NPS pollutant
models of the vadose zone have assumed a homogeneous
soil profile when in actuality the profile is heterogeneous. As
evidenced by the proliferation of transient-state, processed-
based NPS pollutant models, the trend is clearly toward the
coupling of GIS to more sophisticated mechanistic models
that not only account for layering within the soil profile, but
describe nonequilibrium physical flow (i.e., macropore and
preferential pathway flow) and nonequilibrium chemical
conditions (i.e., kinetic sorption). The continued modeling
of existing and future knowledge regarding soil biology and
its relationship to solute sorption, degradation, and seques-
tration at the field scale is needed particularly with respect
to organic NPS pollutants. As suggested by Wagenet and
Hutson (237), more experimental data, new theory, and
improved operational models are needed in the areas of
preferential flow, kinetic sorption, and degradation.

Aside from the computational burden, the most imposing
barrier to the use of sophisticated mechanistic models for
field-scale NPS pollutant applications is obtaining the data.
Without question, the greatest advancements in modeling
NPS pollutants are needed in the area of cheap and accurate
measurements of scale-relevant input and parameter data
where a statistical knowledge of measurement uncertainty is
also provided. As mentioned, remote sensing and non-
invasive measurement techniques offer the greatest promise
in this area. However, because developments in GIS and
solute transport modeling have far out paced those in data
measurement as applied to NPS pollutant modeling, direction
needs to be given to assure that the remote sensing/non-
invasive techniques provide data that are directly applicable
and usable by GIS-based NPS pollutant models. This will

help prevent the development of instrumentation that serves
no direct service to environmental modeling.
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