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Abstract. Previous studies have proposed the first-order reliability method (FORM) as 
an approach to quantitative stochastic analysis of subsurface transport. Most of these 
considered only simple analytical models of transport in homogeneous media. Studies that 
looked at more-complex, heterogeneous systems found FORM to be computationally 
demanding and were inconclusive as to the accuracy of the method. Here we show that 
FORM is poorly suited for computing point concentration cumulative distribution 
functions (cdfs) except in the case of a constant or monotonically increasing solute source. 
FORM is better equipped to predict transport in terms of the cumulative mass flux across 
a control surface. As a demonstration, we use FORM to estimate the cumulative mass flux 
cdf in two-dimensional, random porous media. Adjoint sensitivity theory is employed to 
minimize the computational burden. In addition, properties of the conductivity covariance 
and distribution are exploited to improve efficiency. FORM required eight times less CPU 
time than Monte Carlo simulation to generate the results presented. The accuracy of 
FORM is found to be minimally affected by the size of the initial solute body and the 
solute travel distance. However, the accuracy is significantly influenced by the degree of 
heterogeneity, providing an accurate estimate of the cdf when there is mild heterogeneity 
(O-•ng = 0.5) but a less accurate estimate when there is stronger heterogeneity (O-•ng = 

Introduction 

A standard approach to modelling heterogeneity in the sub- 
surface environment is to treat heterogeneous formation prop- 
erties as realizations of random spatial functions (RSF) [e.g., 
Dagan, 1989; Cht•stakos, 1992; Gelbar, 1993]. With this con- 
ceptualization, fluid flow and mass transport are random pro- 
cesses, and a central problem for geohydrologists is to calculate 
the moments or distributions of dependent quantities such as 
hydraulic head on the basis of the RSF model used for the 
formation property. 

Two common approaches to the problem are analytical 
methods and Monte Carlo simulation, both with well-known 
advantages and disadvantages. Analytical methods produce 
closed-form solutions for the ensemble moments of the quan- 
tity of interest (e.g., hydraulic head, contaminant concentra- 
tion). The solutions provide insight into the processes that 
occur in the field and have been shown to be in agreement with 
some field-scale experimental observations [e.g., Barry et al., 
1988]. However, analytical solutions typically rely on a series of 
simplifying assumptions about the heterogeneity and geometry 
of the porous medium and consequently are not always appro- 
priate. Monte Carlo simulation, on the other hand, generates 
the full distribution of the quantity of interest and is extremely 
flexible in terms of the type of problem for which it may be 
used, but its high computational cost often prevents routine 
application. 
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Because of the limitations of these approaches, there has 
been interest in developing alternative methodologies. Gener- 
ally, these methods obtain only approximations to the distri- 
butions or moments, but aim to do so with high computational 
efficiency and flexibility. One such method is the first-order 
reliability method (FORM), which apparently originated in 
structural engineering and has recently been applied to both 
surface [e.g., Melching, 1990; Melching et al., 1992] and subsur- 
face [e.g., Sitar et al., 1987; Jang et al., 1994] hydrologic prob- 
lems. 

The objective of this work is to evaluate FORM as an ap- 
proach to predicting transport in heterogeneous porous media. 
Previous studies have focused primarily on simple analytical 
models of transport, and it remains to be demonstrated that 
FORM is a useful methodology for treating more complex 
problems. In limited applications to heterogeneous transport, 
FORM has performed poorly in terms of computational effi- 
ciency, and a thorough investigation of FORM's accuracy has 
not been possible. Herein we present a FORM implementa- 
tion with much greater efficiency and provide the first detailed 
assessment of FORM's accuracy in predicting transport in het- 
erogeneous media. 

This article is organized as follows. FORM is first presented 
as a general methodology for computing the distribution of a 
scalar function of random variables. Next, previous applica- 
tions of FORM to transport problems are reviewed and, on the 
basis of the literature and description of FORM given herein, 
general conclusions are drawn as to the utility of FORM in 
transport analysis. Last, we use FORM to predict the cumula- 
tive mass flux across a control surface in two-dimensional het- 
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Figure 1. Hypothetical limit state surface and regions q3 and 

erogeneous porous media and assess the accuracy of the meth- 
odology in several simulations. 

First-Order Reliability Method (FORM) 

Theory 

In this section FORM is presented as a general methodology 
for computing the cumulative distribution of a scalar function 
of a random vector. In the standard presentation of FORM, 
the focus is on computing the probability that a physical system 
will enter a state defined as "failure," with the complimentary 
probability (one minus the probability of failure) serving as a 
measure of the "reliability" or "safety" of the system. The 
safety/failure paradigm is useful in environmental problems 
that can be formulated in terms of compliance/noncompliance 
with environmental standards, and this perspective has been 
presented in the hydrologic literature [e.g., Sitar et al., 1987]. 
Here we take a different approach, presenting FORM as a 
general stochastic method. 

Let Z = [Z1, oo, , Zn] t be a length n random vector with 
probability density fz, where the prime indicates vector trans- 
pose. Throughout we follow the convention that a random 
variable is represented by an upper case letter and a particular 
realization is represented by the same letter written in lower 
case. For example, the scalar function G(Z) is a random vari- 
able and g is a realization. By definition, the probability that G 
is less than or equal to g, Pr [G <- g], is given by the 
cumulative distribution function (cdf): 

FG(g) =Pr[G<--g] = fG fzdZ•"' dZn. _<g 

The n-fold integral is over the region of Z space where G <- g. 
For a general function G and distribution fz, this integral is 
difficult if not impossible to compute because it is hard to make 
explicit the area of integration and because of well-known 
numerical difficulties associated with multifold integrals. The 
objective of FORM is to estimate F G by obtaining an approx- 
imate solution to the integral in (1). Note that G may be 
computed either analytically or numerically. For example, in 
the context of subsurface transport, G could be a concentra- 

tion computed with either an analytical or numerical transport 
model, with Z containing random model parameters. 

To apply FORM we make the following restriction on G. 
We require G to be such that G - # defines a hypersurface 
that divides Z space into two regions: region • where G < # 
and region q3 where G > #. The hypersurface, called the limit 
state surface, is illustrated in Figure 1 for the case of n = 2. 
The figure is a contour plot of a hypothetical function G with 
only the G - # contour shown; for n - 2 the limit state 
"surface" is this contour. Although we have restricted the al- 
lowable functions, the integral in (1) is in general no easier to 
compute because the limit state surface is still difficult to make 
explicit, and the integral is still multifold. The implications of 
this restriction in terms of FORM's applicability to transport 
simulation is discussed below. 

To motivate the methodology, it is useful to consider initially 
a special case for which an exact solution to (1) is easily ob- 
tained. Suppose fz is the multivariate standard normal distri- 
bution (i.e., the elements of Z are uncorrelated normal variates 
with zero mean and unit variance) and the limit state surface is 
a hyperplane. In this case FG is exactly [Madsen et al., 1986], 

(2) 

where/3 = n' ß Z*, n is a unit vector normal to the limit state 
surface and directed toward q3, Z* is the point on the limit state 
surface closest to the origin, and (I)( ) is the univariate stan- 
dard normal cdf. The situation is illustrated in Figure 2, again 
for the case of n = 2. It is straightforward to show - 
(Z*tZ*)l/2; that is, is the distance between the limit state 
surface and the origin. 

Because of the relative ease of evaluating F• for multivar- 
iate standard normal fz and a hyperplane limit state surface, 
the strategy of FORM is to transform (at least approximately) 
more general problems to this special case. In other words, 
transform Z to the space of uncorrelated standard normal 
variables and then approximate the transformed limit state 
surface with a first-order series expansion. The approximation 
of F• is then given by (2), where Z* and n are defined for the 
linearized surface. 

In more detail, the first step in FORM is to transform Z, 

u = T(Z), (3) 

I Z2 

Hyperplane Limit xl 
State Surface 

Region 

Region 

13 = n'.Z* 

n 

Figure 2. Hyperplane limit state surface. 
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where U is a vector of uncorrelated standard normal variates. 

The exact nature of the one-to-one transformation depends on 
fz. For example, iffz is the multivariate normal distribution, T 
is the linear transformation [e.g., Madsen •t al., 1986] 

U = T(Z)= L-I(z- Z) C = LL', (4) 

where C is the covariance matrix of Z, L is a lower triangle 
matrix, and Z is the mean of Z. If fz is the multivariate log- 
normal distribution, the transformation is 

U = T(Z)= L-l(ln Z- 9,) C = LL', (5) 

where In Z = [ln Z•, ..., In Z n]' and C and 9, are, respec- 
tively, the covariance and mean of In Z. In principal, the re- 
quired transformation can be made for anyfz using the Rosen- 
blatt transform [e.g., Madsen el al., 1986], but this requires 
knowledge of conditional distributions and is computationally 
burdensome when Z contains more than a few elements. Der 

Kiureghian and Liu [1986] discuss a method for linearizing T 
and iteratively transforming more general distributions. 

The transformation also maps the limit state surface into U 
space, 

G(T-I(U)) -- (•(U) = #. (6) 

Likewise, the regions 3• and q3 are mapped into 3• u and q3u, 
respectively. 

The next step is to approximate the limit state surface to first 
order, 

-- (u0) + (u - u0) = a, (7) 

where U0 is the point about which 0 is linearized and V 0 = 
[O•/OU•, ..., O0/OUn] is evaluated at U0. The gradient term 
is computed by applying the chain rule, 

aT -1 

vO = au ' (8) 

where VG - [OG/OZ•, ..., OG/OZn] is evaluated at Z = 
T- •(U0) and OT-•/OU is the Jacobian of the inverse transfor- 
mation. 

The problem is now transformed so that FG can be approx- 
imated using (2). Straightforward application of the Lagrange 
multiplier method shows that the point on the linearized sur- 
face closest to the origin is 

U :g = [VO' U 0 -- O(U0) q- g](VG' VOt)-lVO t . (9) 

The cdf is then FG(#) = cb(/3), with /3 = n'. U* and n 
directed towards qg•. Note that this produces an approxima- 
tion of F o at #; the entire distribution can be constructed by 
repeating the procedure for a series of # values. 

There remains the question of choosing U0. One possibility 
is to linearize about the transformed mean, U0 = T(Z), but 
this typically produces poor results near the tails of F o. Pre- 
vious studies have shown that the best results are obtained if 

the linearization is done at the point on the transformed limit 
state surface that is closest to the origin [Madsen et al., 1986]. 
This point is called the "design point," or U r>P, and is illus- 
trated in Figure 3. To use this approach, however, U r>P must be 
located by solving the optimization problem 

rain U'U (10a) 

subject to 

First-order 

Approximation 

Region 

• U2 Region •,• 

l,n 

U1 

Figure 3. First-order •tpproximation of the limit state surface 
in transformed parameter space. 

(•(U) = g (10b) 

The constraint (10b) is nonlinear for problems of interest and 
any optimization algorithm suitable for nonlinearly con- 
strained problems can be used. A relatively simple iterative 
method that has been shown to be effective in solving (10) is 
based on sequentially linearizing the constraint [Liu and Der 
Kiureghian, 1991]. When (10b) is linearized, the solution to 
(10) is given by (9). Thus a sequential linearization algorithm 
is obtained by iterating on (9), 

U/+ 1 = leO' U i - O(U/) q- g](VO. VOt)-lVO t , (11) 

with the convergence point being U DP. Usually U• = T(•;) is 
taken as the first point in the sequence. Although convergence 
is not guaranteed, experience has shown that the method 
works well. Liu and Der Kiureghian [1991] discuss other opti- 
mization algorithms available for solving (10). When U0 = 
U DP, U :g = U DP and we have. Fo(#) = tI)(/3), where /3 = 
n' ß U r>e and n is defined as before. In a typical FORM calcu- 
lation, solving (10) consumes the majority of the computa- 
tional time. In particular, when gradient-based optimization 
algorithms such as (11) are used, it is the calculation of the 
constraint gradient, V(•, that is costly. 

In summary, an estimate of the cdf of G(Z) is obtained by 
transforming Z to the space of standard normal variates and 
then linearizing the transformed limit state surface. The lin- 
earization is done at the design point, which must be located by 
solving the optimization problem (10). Each solution of (10) 
yields a single point, F•(#), and the entire distribution can be 
constructed by repeating the FORM calculatibns for a series of 
# values. The accuracy of the FORM approximation depends 
on the accuracy of the first-order expansion. If the transformed 
limit state surface is a hyperplane, FORM produces exact 
results. The more the limit state deviates from linearity, the 
worse FORM is expected to perform. 

FORM With Incomplete Distribution Information 

In our presentation of FORM we have assumed that fz and 
associated distribution parameters are known. Such full distri- 
bution information is often not available for hydrologic prob- 
lems. Consequently, much of the FORM research in the hy- 
drology literature has focused on the situation where only 
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partial knowledge offz is available. For example, the marginal 
distributions of various subsets of Z might be known, but the 
joint distribution is unknown. In this case F G cannot be com- 
puted because full distribution information cannot be obtained 
in a problem where less than full distribution information is 
input. However, FORM researchers have investigated the 
practice of assuming a joint distribution that is consistent with 
whatever information is available and then performing the 
FORM analysis using the constructed distribution [Der 
Kiureghian and Liu, 1986]. In structural engineering, results 
obtained in this manner are not usually regarded as a cdf; 
instead, they are treated as an index and used to rank the 
relative safety of different structures. Such an interpretation 
may also prove useful in environmental problems, although 
this has not yet been explored. Hydrologic researchers have 
tended to treat the results as a cdf and have shown in some 

simple example problems that this may be a reasonable inter- 
pretation. 

It is known that the most important uncertainty in predicting 
subsurface solute transport is that associated with the spatial 
heterogeneity of hydraulic conductivity. Although it would be 
interesting to investigate the performance of FORM when only 
partial information on the heterogeneity is available or to 
consider additional uncertainties such as measurement errors, 
it should first be demonstrated that FORM is accurate when 

used with full distribution information. Since this has not yet 
been done, we will focus on problems where hydraulic conduc- 
tivity is taken to be a spatial random field with known distri- 
bution and all other parameters are regarded as sure variables. 

Sensitivity Analysis 

At the design point the sensitivity of/3 with respect to model 
parameters is 

013 or 
= n'--- (12) 0Z 0Z 

where 0 T/O Z is the Jacobian of the parameter transformation 
evaluated at the design point. This provides with little or no 
additional computational cost a measure of the sensitivity of/3, 
and hence FG(#), to individual model parameters in the 
neighborhood of the design point. This information may be 
useful, for example, in determining the relative importance of 
different model parameters. Other sensitivity measures can 
also be obtained [see, e.g., Madsen et al., 1986; Sitar et al., 
1987]. 

FORM and Subsurface Transport Simulation 
Previous Studies 

Sitar et al. [1987] give an overview of FORM and possible 
applications to subsurface flow and contaminant transport. As 
examples, they compute probability density functions (pdf) for 
three analytical models, including a one-dimensional convec- 
tive-dispersive transport model in which specific discharge, po- 
rosity, and dispersivity are random variables. It is shown how 
the computed concentration pdf varies for different assump- 
tions about model parameter distributions and correlations. 
The accuracy of the transport results is not assessed, although 
results obtained for two flow examples compare favorably with 
Monte Carlo results. 

Cawlfield and Wu [1993] and Wu and Cawlfield [1992] use 
FORM to analyze, respectively, one- and two-dimensional an- 

alytical models of contaminant transport in homogeneous me- 
dia. They assume the marginal distributions of various model 
parameters are known and construct the joint pdf using the 
Nataf model [Der Kiureghian and Liu, 1986]. Probabilistic sen- 
sitivity measures (e.g., 0/3/0Z) are emphasized, and they con- 
clude that variability in dispersivity is unimportant in compar- 
ison with variability in flow velocity and suggest dispersivity can 
therefore be treated as being deterministic. In comparison with 
Monte Carlo results (400,000 realizations), FORM is found to 
be less accurate when computing lower magnitude probabili- 
ties. Piggott and Cawlfield [1996] perform a similar sensitivity 
analysis for a one-dimensional vadose zone transport model. 

Schanz and Salhotra [1992] apply a variation of FORM to 
both analytical and numerical transport models (homogeneous 
media) and compare the results with Monte Carlo simulation. 
In the method used by these authors,/3 is selected and then !7 
is computed, whereas the opposite is true in the methodology 
described herein. Schanz and Salhotra [1992] treat various 
model parameters as being independent random variables and 
compute a few points on the concentration cdf. They observe 
that the method is generally more accurate estimating proba- 
bilities near the tail of the concentration cdf than in the middle 

of the cdf, although it is not clear if this is due to the fact that 
in the example they use the concentration is very small at the 
50th percentile of the distribution. 

Jang et al. [1994] consider a more complex problem and use 
FORM to simulate one- and two-dimensional transport in 
heterogeneous media. The spatial domain is discretized and 
the resulting elemental conductivities and dispersivities treated 
as correlated random variables with known marginal distribu- 
tions. The flow boundary nodes are also treated as random, 
with the joint distribution of all variables constructed (presum- 
ably) using the method ofDer Kiureghian and Liu [1986]. In the 
one-dimensional analysis, it is observed that FORM produces 
accurate results when the conductivity is homogeneous or 
mildly heterogeneous, but is less accurate under more hetero- 
geneous conditions. Only a limited number of two-dimensional 
results are reported, with FORM being used in two simulations 
to compute a single point on the tail of a point concentration 
cdf. The FORM results differ from those obtained with Monte 

Carlo simulation by roughly a factor of 2. From these results it 
is hard to get a sense of FORM's ability to predict solute 
transport in two-dimensional heterogeneous formations be- 
cause only a single point is computed on what is apparently the 
extreme tail of the concentration complementary cdf. 

Hamed et al. [1995] use FORM to analyze three-dimensional 
transport in a uniform but uncertain velocity field. Various 
aquifer parameters are treated as random variables and a num- 
ber of simulations are performed in which the concentration 
complimentary cdf is computed. FORM is found to be less 
accurate in computing the lower probabilities on the compli- 
mentary cdf. Hamed et al. [1996b] use FORM to simulate 
two-dimensional transport in mildly heterogeneous media and 
sensitivity results for the discretized hydraulic conductivity are 
presented. They also use FORM to analyze a plume contain- 
ment scenario. 

Discussion 

From the previous studies and the description of the FORM 
methodology given above, we can draw some general conclu- 
sions regarding FORM and its applicability to subsurface 
transport problems. 
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Trade-offs associated with FORM. It is worthwhile to con- 

sider the trade-off involved when the approximate FORM 
methodology is used instead of the asymptotically exact Monte 
Carlo (MC) methodology, both in terms of the computational 
requirements and the information that is obtained. As noted by 
Schanz and Salhotra [1992], FORM typically reveals a nar- 
rower range of information than MC simulation because we 
must focus on computing the cdf a particular scalar function, 
whereas with MC methods we generally acquire the results 
needed to compute the cdfs of any number of functions. For 
example, with FORM we might compute the point concentra- 
tion cdf at a particular location and time, whereas with MC 
simulation we compute realizations of the entire concentration 
field, from which the concentration cdf can be computed for 
any given location. On the other hand, FORM provides sen- 
sitivity information that is not easily obtained with Monte 
Carlo analysis, and for some applications this may be a con- 
sideration. 

In terms of computational costs, it makes little sense to use 
FORM to compute distribution functions unless there is a 
computational advantage over MC simulation. In most of the 
works mentioned above, simple analytical models with only a 
few (<10) parameters were used, and the computational bur- 
den of both FORM and MC methods in such cases is minor. In 

contrast, the analysis of two-dimensional transport in hetero- 
geneous media by Jang et al. [1994] was computationally ex- 
pensive, and FORM fared poorly in comparison to MC simu- 
lation, requiring roughly the same amount of time to compute 
a single point on the (point) concentration cdf as would have 
been required to compute full cdfs for the entire spatial do- 
main using MC methods. The high computational cost was due 
to the large (> 100) number of parameters created by discretiz- 
ing the spatial domain. As noted previously, the primary nu- 
merical difficulty is the repeated calculation of V G (where G is 
in this case a point concentration) and Jang et al. [1994] esti- 
mated V G using a divided difference approximation, requiring 
n + 1 calculations of G for each iteration of the optimization 
algorithm. So, for example, if there are 500 parameters (n = 
500) and the algorithm takes five iterations to converge, the 
transport model will have to be run 2505 times for each point 
on the cdf that is calculated. That many simulation runs can 
easily serve as the basis for a very good MC calculation. 
Clearly, FORM is not a sensible methodology for problems 
with a large number of parameters if VG is computed using 
divided differences. Skaggs and Barry [1996a] and Mok et al. 
[1994] show that the computational costs of FORM are signif- 
icantly reduced when sensitivity methods [e.g., Ahlfeld et al., 
1988; Skaggs and Barry, 1996b] are used to compute the gra- 
dient. The use of sensitivity methods in the FORM algorithm 
is further investigated in the simulations presented below. 

Along these same lines, we note that Jang et al. [1994] and 
Hamed et al. [1996b] also use the second-order reliability 
method (SORM) and find that it is generally more accurate 
than FORM. SORM is similar to FORM with the difference 

being that a second-order approximation of the limit state 
surface is used. As described by Der Kiureghian et al. [1987], the 
first step in SO RM is to locate the same design point used in 
FORM by solving (10). Constructing the second-order approx- 
imation through this point then requires roughly 8n additional 
evaluations of G. Again, when n is of order 102 or greater, it 
is likely that it would be possible to obtain an MC result with 
a similar amount of computational effort. Since there does not 
appear to be any way to avoid these 8n function evaluations, 

we conclude that SORM will not provide any advantage over 
MC methods when applied to problems with a large number of 
parameters. 

When parameters are created from discretization of a ran- 
dom spatial domain, it may be possible to reduce the number 
of parameters in the FORM analysis. Skaggs and Barry [1997], 
Hamed et al. [1996a], and Mok et al. [1994] have investigated 
regionalizing subsets of the discretized parameters and per- 
forming the FORM analysis using a coarser grid than is re- 
quired by the numerical scheme. Skaggs and Barry [1997] have 
also examined the possibility of defining an alternative design 
point that is "close" to the true design point but that can be 
located more easily. Either approach should make both 
FORM and SORM more efficient, and further investigations 
along these lines are warranted; however, many questions re- 
main open, such as determining the optimal upscaling proce- 
dure and demonstrating that sufficiently accurate results can be 
obtained in a variety of problems. 

Concentration versus mass flux formulation. Regardless 
of the trade-offs associated with FORM, we can make some 
observations about the suitability and expected accuracy of the 
methodology for different formulations of the transport prob- 
lem. Recall we stipulated G = # must define a surface that 
splits Z space into the two regions, q3 and 3•. Although it has 
not been previously noted in the literature, a simple example 
illustrates that some formulations of the transport problem are 
not expected to satisfy this requirement. 

Consider one-dimensional tracer transport in a homoge- 
neous porous medium where pore water velocity is uniform but 
uncertain. Assume the velocity uncertainty is characterized by 
some distribution and all other parameters are known deter- 
ministic constants. Letting C be the tracer concentration atx = 
• and t = t, the problem is to compute a point on the cdf of 
C, say Fc(•). In this simple problem, we can characterize by 
inspection the regions delineated by C = • for two different 
transport scenarios. 

First consider the case of a constant solute source at the inlet 

end of the transport domain. The solute profile computed with 
the mean velocity at time • might look something like the 
profile in Figure 4a. By physical reasoning we see that there is 
a particular velocity, •, that will result in a concentration •, 
and any velocity v < • produces c < • and any velocity v > 
• produces c > •. As indicated in (1), F c is the integral offv 
over region 3•, which is illustrated in the inset of Figure 4a. The 
probability space is divided into the two regions q3 and 3• and 
thus the requirements of FORM are consistent with the prob- 
lem formulation. 

Next consider the case of solute being introduced as a short 
pulse at the inlet end. The solute profile at time t might look 
something like that shown in Figure 4b. In this scenario there 
are two velocities that can produce • at t' a slower velocity in 
which • is realized as the leading edge of the plume passes • 
and a faster velocity in which • is realized as the trailing edge 
passes •. The inset in Figure 4b illustrates fv and the areas of 
integration. Clearly the parameter space is not divided into two 
regions. If FORM were applied to this problem, only one of 
the shaded areas would be accounted for and the results will be 

poor if the size of the second region is nonnegligible. In two- 
and three-dimensional heterogeneous transport problems 
where the random model parameters are the discretized con- 
ductivity elements, an analogous problem arises where a con- 
centration can be realized at a particular location and time as 
a plume approaches a point, passes beyond a point, or passes 
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Figure 4. Illustration of the applicability of FORM to trans- 
port problems with (a) a constant source and (b) a transient 
source. 

to the side of a point. Each possibility produces a local minima 
in (10), and experience has shown that gradient-based algo- 
rithms commonly fail in such cases, jumping endlessly back and 
forth between local minima. Of course, another optimization 
approach could be used to find the global minimum, but the 
point is that the probability content associated with these local 
minima may be significant and, consequently, a FORM ap- 
proximation made at the global minimum will be a poor esti- 
mate of the cdf. In theory, FORM can be modified to handle 
such problems by defining multiple design points [see Madsen 
et al., 1986], but as a practical matter it would be difficult to 
create a general computer code capable of identifying and 
solving these problems, and in the end would probably be 
computationally inefficient relative to MC simulation. 

We conclude that if G is a point concentration, FORM can 
be used reliably only if the solute source is constant or mono- 
tonically increasing. If the solute source is transient, or if there 
is a finite solute body initially present in the system, FORM is 
likely to produce poor results. One way to avoid the limitation 
on source type is to formulate the transport problem in terms 
of the cumulative mass flux (M) across a control surface, 
defined as the mass of solute per unit time and unit area 
crossing a surface, integrated over time. In this case M is 
monotonic regardless of the source type and FORM can be 
used to compute f•r without the earlier difficulty. The descrip- 
tion of transport in terms of solute flux has been studied pre- 
viously using analytical methods [e.g., Shapiro and Cvetkovic, 
1988; Dagan, 1989; Dagan et al., 1992] and cumulative mass flux 
has been found to be a relatively robust quantity for describing 
field-scale solute transport [Cvetkovic et al., 1992]. The empha- 
sis of these previous works is on computing the mean and 
variance of M given a statistical description of the conductivity 
or velocity field. The only way to obtain full distribution infor- 
mation with such methods is to assume a priori a distribution 
for M. In the remainder of this paper we develop and test a 

FORM methodology for predicting M in heterogeneous for- 
mations. 

Cumulative Mass Flux Prediction With FORM 

Physical System and Governing Equations 

We focus on two-dimensional (horizontal plane) tracer 
transport in a saturated heterogeneous porous formation un- 
der steady flow conditions. The governing transport equation is 
[Bear, 1972] 

a---•-= aX i Dij -- •X i (FiG) (13) 
where C(x•, x2, t) is the solute concentration [M L-3], 
V•(x•, x2) and V2(x•, x2) are the components of the depth- 
averaged linear groundwater velocity vector [L T-•], and 
summation from 1 to 2 over terms with repeated indices is 
implied. The components of the hydrodynamic dispersion ten- 
sor are [Bear, 1972] 

Dij = ,lvl/j + (Oil- at)Vi•/IVI, (14) 

where a• and a t are, respectively, the longitudinal and trans- 
verse (local scale) dispersivities [L ], Ivl is the magnitude of the 
veloci• vector, •ij is the •onecker delta, and molecular dif- 
fusion is ignored. The solute veloci• is obtained from Darcy's 
law and the steady flow equation, 

1 OH 

Vi: -•g•i i= 1, 2 (15) 

lK + lK = 0 (16) Ox• • 

where K is the depth-averaged isotropic hydraulic conductivi• 
[L T-•], H is the hydraulic head [L], 0 is the constant 
formation porosi• [L 3 L-3], and l is the constant formation 
thickess [L ]. The hydraulic conductivi•, K(x •, x2), is a ran- 
dom spatial function. 

At time zero an initial body of solute is distributed over a 
finite volume and sits upstream from the control surface of 
interest, which for simplici• is assumed to be a planar surface 
that is normal to the x• •s (the direction of mean flow) and 
is referred to as the control plane (CP). For a given CP the 
transport problem can be formulated in either of •0 ways. We 
can compute the cumulative mass flux, M, at a •ed time, in 
which case M is random and time is a deterministic constant, or 
we can compute the time at which a •ed amount of the mass 
will have crossed the CP, in which case time is random and the 
mass amount is constant. We adopt the former conceptualiza- 
tion and seek the cdf of M, F•. The cumulative mass flux 
across a CP that is an arbitra• distance downstream is 

where 

•0 t M(t) = j(r) dr (17) 

•• oC oC j(t) = Ol CV1- Dll •11- 312 • dX2' (•8) 

As a particular example we consider a rectangular spatial 
domain measuring 10 m x 4 m, with a log-conductivity corre- 
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lation length scale of X - 1 m (Figure 5). The top and bottom 
sides are no-flow boundaries and the left and right sides are 
fixed-head boundaries with a mean hydraulic gradient of 4 x 
10 -3 in the x• direction. The transport boundary conditions 
are OC/Ox2 - 0 on the top and bottom sides, meaning there 
is no mass flux across the no-flow boundaries, and OC/Ox• = 
0 on the right (downstream) side and C - 0 on the left side, 
meaning the mass flux across the exit boundary is due to 
advection alone and solute reaching the upstream boundary is 
immediately removed from the system [Barry and Sposito, 
1988]. In our examples the upstream boundary condition is 
essentially irrelevant because the solute does not migrate 
there. Also, the control planes are located far enough away 
from the exit boundary so that the downstream boundary con- 
dition is not expected to influence transport across the CP. 

Initially, the solute is uniformly distributed over a rectangu- 
lar area. The conductivity is lognormally distributed with geo- 
metric mean KG = 8.0 m d -• and isotropic exponential cor- 
relation function R - exp ( - h/X), where h is the separation 
distance. Various values of %nX will be considered. The local 
dispersivities are al = 0.1 m and o/t = 0.05 m, the effective 
porosity is 0 - 0.3, and the formation thickness is I -- 5 m. 
Numerical Solution 

The flow equation is solved and the velocity field is obtained 
using Galerkin's finite element method with rectangular bilin- 
ear elements [e.g., Pinder and Gray, 1977; Huyakorn and Pin- 
der, 1982]. The transport equation is solved using the Laplace- 
transform Galerkin technique [Sudicky, 1989]. The grid used in 
the spatial discretization is dimensioned 51 x 41 with uniform 
spacings Ax• - 0.2 m and Ax2 = 0.1 m. These spacings allow 
five grid nodes per correlation length in the x • direction and 10 
grid nodes per correlation length in the x2 direction. 

We apply FORM to compute the cdf of M(K), F•4, where 
K is the vector containing the 2091 nodal conductivities. The 
finite element approximation of j can be written 

j•a'c, (19) 

where c is the vector of nodal concentrations and a is the vector 

containing the basis function, velocity, dispersion, and quadra- 
ture terms necessary to approximate the operators in (18) [e.g., 
Pinder and Gray, 1977; Huyakorn and Pinder, 1982]. As part of 
the Laplace-transform Galerkin method, M is computed in the 
Laplace domain and numerically inverted to the time domain. 
Recall it is essential that we compute the gradient OM/OK 
efficiently. Skaggs and Barry [1996b] describe direct and adjoint 
methods that can be used in conjunction with the Laplace- 
transform Galerkin technique to compute the required sensi- 
tivities. Since M is a scalar function and is linear in c, the 
adjoint method is the most efficient approach [Skaggs and 
Barry, 1996b]. Adjoint methods compute the sensitivities of 
functionals (i.e., M) without computing the Jacob!an of state 
variables (i.e., 0c/0K). Based on our previous results [Skaggs 
and Barry, 1996b], we expect that with 2091 parameters the 
adjoint method will require 2 orders-of-magnitude less CPU 
time than the perturbation method to compute a single gradi- 
ent. 

The parameter vector K follows the multivariate lognormal 
distribution with covariance matrix 

C = Oh2n•R, (20) 

where R is the matrix of correlation coefficients. The relevant 

parameter transformations are 

3 - 

-- D=3•. 

-7 

0 

0 2 10 

Control 
Planes 

D=7•. 
! 

6 

Figure 5. Diagram of the two-dimensional transport system; 
• is the conductivity correlation length, • is the transverse 
dimension of the initial solute body, and • is the distance from 
the initial solute body to the control plane. 

U = T(K) = tr•cF -1 In (K/KG) R = rr', (21) 

K = T-i(U) = KG exp (O'inKFU), (22) 

where F, is lower triangular and exp ([ ,..., ]') = [exp ( ),... exp ( )]'. An interesting and important aspect of 
applying FORM with this covariance and parameter transfor- 
mation is that the inverse transform of the design point, K DP = 
T-•(uDP), is independent of Ohn x. This means that once 
F,um) is computed using a particular value of thn/O F,um) 
can be obtained for any other value of tr•n/c by simply taking the 
new design point as U r)P = T(Kr)P), where T is written with 
the new thnX. 

TO see the independence of K DP, recall that the design point 
U r)P is the solution to the constrained minimization problem 
(10), which was written in terms of the standard normal pa- 
rameter space. The equivalent problem in the untransformed 
parameter space is found by substituting (21) into (10). Fol- 
lowing some algebraic manipulations, we obtain 

min O'•n•2 a' R-•a (23a) 

subject to 

G(K) = # (23b) 

where a = In (K/KG) and the solution is equal to K DP. Note 
that the vector K DP that satisfies (23) is the same regardless of 
the value of the (nonzero) scalar %nX' Thus K DP is indepen- 
dent of %nX, and U r)P can be obtained for any %nX using K DP 
and (21) as indicated above. The independence of the inverse 
transform of the design point also holds for multivariate nor- 
mal parameter vectors with covariance matrices of the form 
(2o). 

To evaluate the accuracy of the FORM solutions, we com- 
pare the results with those obtained using Monte Carlo simu- 
lation. Realizations of the conductivity nodes are generated 
using the lower-upper triangular matrix technique [e.g., Chris- 
takos, 1992, pp. 326-328]. On the basis of visual inspection of 
the computed F•4, we found 1000 realizations were generally 
sufficient for the MC method to converge. 

Results and Discussion 

Previous studies [e.g., Cvetkovic et al., 1992] indicate that F•4 
is influenced by the transverse extent of the initial solute body 
(•), the travel distance to the control plane (•), and the 
degree of conductivity heterogeneity (quantified by rrlng ). We 
assess the accuracy of FORM by performing a number of 
simulations in which these factors are varied. The results are 
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Figure 6. Computed cumulative mass flux cdfs for a control 
plane located a distance • = 3X downstream from an initial 
solute body. Monte Carlo results are shown with solid lines, 
FORM results with open circles. 

for the particular system under consideration and may not be 
readily transferable to other systems. For example, it is ex- 
pected that the no-flow boundaries at the top and bottom are 
influencing the transport when the initial plume is large, so the 
results may not apply to unbounded spatial domains. 

Let m o be the total mass in the initial solute body. Figure 6 
shows plots of F•t(m/mo) computed at time t - 25 days for 
• = 3X and various values of • and %rat. The Monte Carlo 
results are depicted with a solid line and the FORM results 
with open circles. The left column of plots is for Ohrac = 0.5 
and the right is for %rac - 1.0. From top to bottom, the three 
rows of plots are for • = X, 2X, and 3X. The longitudinal length 
of the initial solute body is of lesser importance in predicting 
F•t [Cvetkovic et al., 1992] and is approximately equal to 0.5X 
in all of our simulations. 

The uncertainty in M should be less for larger • [Cvetkovic 
et al., 1992]. This can be seen in our results by noting that FM 
becomes steeper (i.e., has a smaller variance) as • is increased. 
The effect of • on FORM's accuracy is observed by comparing 
the three rows of plots. The accuracy is only slightly affected by 
•, with the rows of plots showing a decrease in accuracy with 
increasing •. However, over the range of source sizes consid- 
ered here, the effect is very minor. 

More important is the effect of O',rac, which is observed by 
comparing the two columns of plots. FORM is significantly 
more accurate with the milder heterogeneity (O'srat = 0.5). 
The one-dimensional analysis of Jang et al. [1994] similarly 
showed a decrease in FORM's accuracy with increasing heter- 
ogeneity, although the pattern of misfit apparent in Figure 6 
was not observable because they computed only two points on 
the concentration cdf. 

Figure 7 shows results computed for the longer travel dis- 
tance • = 7X and time t = 65 days. At this larger travel 

distance, the nearly linear cdfs indicate that there is roughly an 
equal probability that any particular mass fraction will have 
passed the control plane. FORM is again significantly more 
accurate with the milder heterogeneity. The slight decrease in 
accuracy with increasing • is again observable. Overall, the 
results for the longer travel distance (Figure 7) appear to be 
slightly less accurate than those for the shorter distance (Fig- 
ure 6). 

Note that the pattern of misfit is consistent in Figures 6 and 
7. That is, when FORM is inaccurate, it underestimates high 
values of FM and overestimates low values. In some environ- 
mental applications it is the complimentary cdf, 1 - F•, that 
is of interest. For example, it may be required to compute the 
probability that a contaminant stored in the subsurface will 
migrate beyond the boundary of a storage facility at some time 
in the future. In this case the complimentary cdf defines ex- 
ceedance probabilities for different amounts of mass. The pat- 
tern of misfit indicates that FORM tends to overestimate ex- 

ceedance probabilities for high-mass, low-probability events 
(the compliment of underestimating high F• values) and un- 
derestimate exceedance probabilities for low-mass, high- 
probability events. If one is interested in the former type of 
event, FORM may be seen as providing a "conservative" esti- 
mate of the exceedance probability. On the other hand, if the 
latter case is of interest, FORM tends to provide an overly 
optimistic estimate. 

Computational Issues 

In order to compare the computational demands of FORM 
and MC simulation, we consider the time required to compute 
the results shown in Figure 6. All calculations were done with 
a DEC ALPHA workstation. The computational requirements 
of MC simulation depend on the number of realizations used. 

Oln K = 0.5 Oln K TM 1.0 

1.0 

J 0.5 

"(3 
O o.o 

X 
• 1.0 

(/) o.5 

> o.o 

63 4.0 

0.0 

0.0 

o 

0.5 1.0 

.N = 3•. 
, 

0.0 0.5 1.0 

Mass Fraction, m/mo 
Figure 7. Computed cumulative mass flux cdfs for a control 
plane located a distance • = 7X downstream from an initial 
solute body. Monte Carlo results are shown with solid lines, 
FORM results with open circles. 
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Each of the six MC results shown in Figure 6 required gener- 
ating 1000 realizations of the conductivity field plus 1000 runs 
of the transport model. The approximate CPU time needed for 
the six MC results was 56 hours. The computational require- 
ments of FORM depend on the number of points computed on 
F•4. We computed 10 points for each plot, and the approxi- 
mate CPU time required for the three FORM results in the left 
column of Figure 6 was 6.5 hours. The FORM results in the 
right column for different trln/• were then computed by taking 
advantage of the invariance of Km' as described above, and 
this required only seconds of additional CPU time, meaning 
the total CPU time needed to generate the FORM results in 
Figure 6 was 6.5 hours. Thus FORM required approximately 
8.5 times less CPU time than MC simulation to obtain the 

results in Figure 6. The advantage of FORM would of course 
be greater if we had computed results for a whole series of 
trln/•, because FORM would obtain those additional results 
with a negligible amount of computational effort whereas MC 
simulation would require 1000 simulations for each additional 
result. Conversely, if we had considered only one of the col- 
umns in Figure 6, the invariance of Um' would not be any 
advantage, and FORM would require about 4.25 times less 
CPU time that MC simulation. 

Conclusions 

We have evaluated FORM as a method for predicting solute 
transport and applied the method to compute the cumulative 
mass flux cdf for solute crossing a control plane in a hetero- 
geneous porous formation. The following conclusions can be 
drawn: 

1. Except in the case of a constant or monotonically in- 
creasing solute source, FORM is not well suited for computing 
point concentration cdfs because the problem formulation is 
inconsistent with FORM's premise that the limit state surface 
divides the parameter space into two regions. FORM may be 
applied to transport simulation in a consistent manner by for- 
mulating the problem in terms of the cumulative mass flux 
across a control surface. 

2. If FORM is not more efficient than Monte Carlo meth- 

ods, the methodology is of little value for computing distribu- 
tion functions. When a problem has a large number of random 
parameters, FORM will not have a computational advantage 
over MC methods if the perturbation method is used to com- 
pute the gradients used in the FORM algorithm. If special 
sensitivity methods are used to compute the gradients, FORM 
may prove computationally advantageous. 

3. Similarly, the second-order reliability method will not 
provide a computational advantage over Monte Carlo methods 
when there is a large number of parameters because of the 
additional function evaluations that are necessary to construct 
the second-order approximation. In contrast to FORM, there 
does not appear to be any way to avoid these evaluations. 
SORM may become useful for predicting transport in hetero- 
geneous media, however, if it is possible to reduce the number 
of discretized parameters [e.g., Mok et al., 1994; Skaggs and 
Barry, 1997; Hamed et al. 1996a]. 

4. Based on our simulations, FORM provides accurate es- 
timates of the cumulative mass flux cdf (F•4) in mildly heter- 
ogeneous porous media (trln/• = 0.5). In more strongly het- 
erogeneous media (trln/• = 1.0), FORM is less accurate, 
overestimating low values of F•4 and underestimating high 

values. The size of the initial solute body and the solute travel 
distance had only a minor effect on FORM's accuracy. 

5. In our simulations FORM was more efficient than the 

Monte Carlo methodology, requiring approximately 8 times 
less CPU time to compute all of the presented results. FORM 
computes points on a cdf independently of one another, so 
FORM's advantage would have been greater if fewer points on 
the cdf were desired. FORM's efficiency was partly due to the 
fact that the design point in untransformed parameter space is 
independent of %n/• when the covariance of the discretized 
conductivity can be written C - o'•n/•R; this allows one to 
obtain distribution functions for a series of %n/• values with 
only slightly more effort than is required to compute a single 
distribution function. More importantly, FORM's superior ef- 
ficiency was dependent on using a transport code that em- 
ployed an adjoint sensitivity method to compute the required 
gradients, and developing such computer programs requires 
significant effort. 
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