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Abstract

The spatial variability of the K and n parameters of the Freundlich sorption isotherm forf

atrazine and their correlation with soil textural variables, cation exchange capacity and organic
carbon content were studied in a stagnic podzoluvisol. Ninety-three sample points were organized
on an irregular three-dimensional grid to a depth of 3.2 m. A trend in the vertical direction
explains, for most variables, about 85% of the observed variance. This trend also significantly
influences the observed correlation structure between the variables. The horizontal and vertical
trends were removed from the data set with the median polish algorithm. The residuals resulting
from this technique obey the intrinsic hypothesis. Organic carbon content, cation exchange
capacity and n revealed spatial structure. The estimated correlation length scales in the vertical
direction were between 0.63–0.81 m for n and the organic carbon content, and between 0.25–0.40
m for the cation exchange capacity. The variograms of sand, loam, clay and K exhibited puref

nugget. The correlation structures between the variables differ for different spatial increments.
Variables appeared correlated at small spatial increments whereas they are not correlated if the
spatial location of the sample points is neglected. q 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Ž .A recent review of pesticide transport through field soils Flury, 1996 showed
experimental evidence supporting the occurrence of pesticide leaching to groundwater in

Ž .sandy, loamy and clayey soils. Furthermore, Flury 1996 stressed the importance of
Žpreferential flow phenomena for the leaching of very strongly adsorbing pesticides e.g.,

.Kladivko et al., 1991; Flury et al., 1995; Traub-Eberhard et al., 1995 . Field experiments
contribute significantly to the understanding of transport of adsorbable and degradable
solutes and reveal problems related to pesticide transport at field-scale. In addition,
controlled laboratory experiments may provide experimental evidence for different
physical and chemical processes in the soil system such as pesticide adsorption at
multiple sites with different kinetic adsorption–desorption rates or with irreversible

Ž .reactions such as hydrolysis e.g., Brusseau et al., 1989; Ma and Selim, 1994 .
Analytical or numerical models may be alternatives to investigate the effects of different
processes on pesticide transport. Such tools can be used to evaluate the effect of
different assumptions on pesticide breakthrough curves or to quantify the relative
importance of certain local-scale transport processes on field-scale transport in physi-
cally and chemically heterogeneous soils. The present study provides relevant data on
the spatial variability of nonlinear adsorption parameters of atrazine which may be used
in various modelling studies.

Numerical studies have shown that the dispersion of a solute plume moving down-
wards in a soil is significantly influenced by the spatial variability of the soil hydraulic

Ž .properties Tseng and Jury, 1994; Roth and Hammel, 1996; Vanderborght et al., 1997 .
Besides physical heterogeneity, chemical heterogeneity of the soil has also a major
impact on the longitudinal dispersion of reactive solutes as was shown in the studies of

Ž . Ž .Jury and Gruber 1989 and van der Zee and Boesten 1991 . The effect of both physical
and chemical heterogeneities on pesticide movement in the unsaturated zone for linearly

Ž .adsorbing pesticides was recently investigated by Yang et al. 1996a,b . They assumed
either a perfectly positive or negative correlation, or no correlation, between the
saturated hydraulic conductivity, K , and the adsorption coefficient, K . Both thes d

Ž . Ž .analytical Yang et al., 1996a and the numerical Yang et al., 1996b analyses indicate
that pesticide spreading is larger if K and K are negatively correlated in comparisons d

with the positively correlated or the uncorrelated case, and that dispersion is enhanced
Ž .with larger geometric means of the adsorption coefficient. Bellin and Rinaldo 1995

found that the dispersion of the pesticide plume is also affected by the degree of
correlation between the physical and chemical properties for pesticide transport under
saturated conditions.

Although the variability of pesticide sorption parameters significantly influences the
transport of pesticides through the unsaturated and saturated zones, and although a
positive, a negative, or no correlation between K and K is assumed in manyd s

modelling and theoretical studies, little information is available about the variability and
the spatial correlation structure of the sorption parameters and their correlation with

Ž .other soil parameters. Recently, Beck et al. 1996 investigated the spatial and temporal
variability of the adsorption and desorption coefficient of isoproturon in a cultivated
structured clay soil. The present paper analyzes the spatial structure of atrazine sorption
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Žparameters and soil properties from an experimental site near Julich, Germany Vereecken¨
.et al., 1996 .

The main objective of this work was to study the spatial variability of the parameters
Žof the Freundlich isotherm for atrazine AT: 2-chloro-4-ethylamino-6-isopropylamino-

.1,3,5-triazine sorption in the vadose zone and to quantify different factors contributing
to the observed spatial variability. A second objective of this study was to explore the
consistency of the spatial correlation between the different soil properties at different
spatial scales.

2. Materials and methods

2.1. Experimental design

Ž .Percent sand, loam, and clay, organic carbon content OC , cation exchange capacity
Ž . Ž . Ž .CEC and atrazine AT sorption parameters K and n , measured on soil samples to af

Ž .depth of 3.2 m, were taken from an extended data set Vereecken et al., 1996 . Samples
were taken from the Krauthausen experimental site near Julich, Germany. This site was¨

Žunder meadow for several years. The soil is classified as a stagnic podzoluvisol FAO,
. Ž .Driessen and Dudal, 1991 and has five distinct horizons: Ap horizon 0–30 cm , eluvial

Ž . Ž . Ž .Eg horizon 30–40 cm , Btg1 horizon 40–60 cm , gleyic Btg2-horizon 60–100 cm ,
Ž .and a C2 horizon )100 cm . The general soil texture at the experimental site is loamy

with clay percentages ranging between 20 and 30%. A specific geological profile of the
Žsite was established on the basis of four boreholes to the depths of 15 and 20 m two

. Ž .boreholes per depth Vereecken et al., 1996 . These boreholes revealed a 20-cm thick
stony layer at a depth between 1.0 to 1.3 m below surface. Below the stony layer,
between 1.3 and 4.0 m, there was a layer of dark-brown gravel deposited by the Rur
which was poorly sorted compared to the underlying Rhine sediments between 4.0 and
11.0 m depth.

In total, 93 soil samples were collected at several depths in and around three
Žboreholes, the coordinates of which, in a local reference system, are y33.83 m, 58.6

. Ž . Ž .m for borehole 7, y9.7 m, 21.44 m for borehole 22, and y29.18 m, 32.44 m for
borehole 32. The boreholes were chosen in such a way that they were independent from

Ž .each other and matched the groundwater sampling protocol Vereecken et al., 1996 . In
borehole 7, 11 samples were taken to a depth of 1.25 m with a vertical increment of 0.1
m; four additional samples were taken between 1.25 m and 2.65 m depth. In the other
two boreholes, nine samples were taken to a depth of 3.1 m, with a vertical increment of
0.2 m in the top 1 m and approximately 0.4 m increment in the subsoil. Soil samples

Ž .were also taken from four depths 0.125, 0.325, 0.55 and 0.85 m at five sites located at
Ž . Ž . Ž . Ž . Ž .0, 0.4 , 0.38, 0.2 , 0.38, y0.2 , y0.38, y0.2 and y0.38, 0.2 m relative to each
borehole.

The AT sorption isotherms were determined in triplicate for each sample with
14C-ring-labelled molecules, basically following the recommendations of OECD Guide-

Ž .line 106 Organization for Economic Co-operation and Development, 1981 , with a 72-h
Ž . y2contact time between the solids 5 g dry weight and the CaCl 10 solution with the2
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Ž .pesticide 10 ml . The working concentrations in the liquid phase ranged from 1 to 1000
mg ly1 and were measured by liquid scintillation counting. The concentration bound to
the solid was calculated as the difference between the concentrations in solution samples
with and without solid. Typically, the precision of the mean K values were in thef

5–10% range. More details of the procedures and the measurement errors can be found
Ž .in Moreau and Mouvet 1997 .

For the samples taken around the boreholes, the grain-size distribution and cation
Ž .exchange capacity CEC were analysed following the AFNOR standard methods

Ž .X31-107 and X31-130, respectively AFNOR, 1983, 1985 ; the organic carbon content
Ž .OC was measured by dry combustion at high temperature under an oxygen stream and

Ž .the CO produced was measured by infrared spectrometry CS 125, Leco . For the2

samples taken in the three boreholes, the particle-size distribution was determined with
Ž .the LABEX L-8903-11-2 standard method LABEX methods, 1989 , the OC with the

Ž .Walkley and Black method Nelson and Sommers, 1982 and the CEC using the
ŽLABEX L-8703-21-11 standard method Ammonium acetate at pH 7, LABEX methods,

.1987 .
The measured AT adsorption isotherm was described with the Freundlich isotherm:

x
nsK C 1Ž .f em

Ž y1 . Ž y1 .where xrm g kg is the concentration bound to the solid, C g l is thee

concentration in solution at the end of the 72-h contact period, K and n are empiricalf
Ž .constants. Parameters of Eq. 1 were obtained by fitting a straight line to the

Ž . Ž .log-transformed concentration data Fetter, 1993 . For the geo statistical analyses in this
study, K was raised to the power 1rn to obtain the same units for all estimatedf

K -values, the n values being sometimes quite different from unity.f

2.2. Stationarity assumptions and model building

Ž .A measured soil property, denoted by z x where x is the vector containing the
Ž 3.spatial coordinates and xgD D being a subset of R , is assumed to be a realization

Ž . Ž . Ž .of a stochastic random space function RSF Z x . Z x is a continuous variable in
space. The statistical properties of the RSF are determined based on the geostatistical

Ž .model of regionalized variables Matheron, 1963; Cressie, 1993 . In this paper, we
assume stationarity for the increments only, i.e., the intrinsic hypothesis. Taking the

Ž .vector hsx yx as the lag distance between the two random variables Z x and1 2 1
Ž .Z x , then this hypothesis is expressed as:2

E Z xqh yZ x s0 2Ž . Ž . Ž .
and

2
E Z xqh yZ x s2g h 3Ž . Ž . Ž . Ž .Ž .

Ž . Žwhere g h is the semivariogram. Together with the ergodicity assumption Cressie,
.1993 , the intrinsic hypothesis is used in this paper to infer the statistical properties of

the RSF.
ŽIn general, soil properties exhibit non-stationarity in both mean and variance Hamlett

.et al., 1986 , thus violating the assumptions made in the intrinsic hypothesis. Prior to
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semivariogram estimation and modelling, a robust-resistant exploratory data analysis is
Ž .performed using techniques described by Hamlett et al. 1986 , Cressie and Horton

Ž . Ž . Ž . Ž .1987 , Mohanty et al. 1991 , Mohanty and Kanwar 1994 and Jacques et al. 1997 .
Ž .To handle non-stationarity of the mean, Z x is decomposed into:

Z x sm x q´ x 4Ž . Ž . Ž . Ž .
Ž . Ž .where m x is the deterministic trend and ´ x is the stochastic small-scale variation

Ž .with zero mean. The ´ x is characterized by a covariance function or semivariogram.
Ž . Ž .The approach is now to estimate ´ x from the realization z x by subtracting an

Ž . Ž . Ž .estimate of m x from z x . In a three-dimensional context, Z x can be written as
Ž .Mohanty and Kanwar, 1994 :

2 3

Z x , x x smqd x qh x , x q g x yx x yxŽ . Ž . Ž . Ž . Ž .Ý Ý1 2 3 i 3 j 1 2 un u u n n

us1nsuq1

q´ x , x , x 5Ž . Ž .1 2 3

where m is the overall mean independent of location x, d is the depth effecti
Ž . Žis1, . . . I, with I number of vertical components , h the horizontal effect js1, . . . , J,j

.with J number of locations in the horizontal plane where samples were taken , g is auÕ

diagonal drift parameter in the x yx plane and x are the averages of the individualu Õ u
Ž .x . The first three terms in Eq. 5 describe the additive effects, while nonadditiveu

effects and interactions between horizontal and vertical effects are described with the
Ž . Ž .fourth term in Eq. 5 Cressie, 1993, p. 190; Mohanty and Kanwar, 1994 . Estimations

Ž . Ž .of the first three components of model 5 m, d and h were done using a resistanti j
Ž . Ž .median polish algorithm described in detail by Cressie 1993 p. 186 . Median polish

algorithms were found to be more robust with respect to outliers than mean polish
Ž .algorithms Cressie and Glonek, 1984; Mohanty et al., 1991 . The estimated compo-

nents, m, d and h of m, d and h , respectively, are subtracted from the measuredi j i j
Ž .value, z x . In a second step, the occurrence of diagonal trends and the significance of

Ž Ž . .the drift parameters are explored. The values z x ymyd yh are plotted againsti j
Ž .Ž .x yx x yx . These plot are visually checked for trends and g was fitted byu u Õ Õ uÕ

linear regression. Finally, the estimated deterministic trend was subtracted from the
Ž . Ž . Ž .measured z x to obtain the residual r x , an estimate of ´ x . Stationarity of variance

Ž 2 .was investigated using median–interquantile range squared IQ plots and, if necessary,
a log -transformation was used to stabilize the variance. After checking the stationaritye

in the mean and the variance, residuals were used in the geostatistical analysis.

2.3. Variogram estimation and model fitting

Ž . Ž .The semivariogram estimator, g h , as proposed by Matheron 1963 is given as:ˆz

Ž .N h1 2
g h s r x qh yr x 6Ž . Ž . Ž . Ž .ˆ Ýz i i2 N hŽ . is1

Ž .where h is the lag distance and N h is the number of pairs separated by the lag
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Ž . Ž .distance. The cross-semivariogram between the residuals of z x and z x is defined1 2

as:
Ž .N h1

g h s r xqh yr x r xqh yr x 7Ž . Ž . Ž . Ž . Ž . Ž .ˆ Ý12 1 1 2 22 N hŽ . is1

Ž . Ž . Ž . Ž .where r x and r x are the residuals of the random variables z x and z x ,1 2 1 2

respectively. This definition of the cross-semivariogram has the property that it is an
Ž . Ž Ž . Ž .. Ž . Ž Ž . Ž ..even function symmetric in 1, 2 g h sg h and in h,yh g h sg yh .12 21 12 12

This implies the assumption of a symmetric cross-covariance function when the cross-
Ž .semivariogram is used in the cokriging system Journal and Huijbregts, 1978 . However,

the cross-covariance function is not by definition a symmetric function, due to a possible
Ždelay effect of a general lag of one variable behind the other for a discussion, see

.Wackernagel, 1995; Goovaerts, 1997 . When the delay effect is absent, the cross-vario-
gram and the cross-semivariogram are equivalent tools. For the dataset considered in this
paper, it is not likely to expect a delay effect between the different variables. An
alternative is to use the so-called pseudo-cross-semivariogram as defined by Cressie
Ž .1993 . However, two major disadvantages are linked to this pseudo-cross-semivario-

Ž .gram: 1 it makes only sense to use the pseudo-cross-semivariogram for variables with
Ž .the same units representing the same phenomena, and 2 the pseudo-cross-semivario-

gram fails to express negative correlations between the variables. Given these constrains
and given the specific objectives of this study, the cross-semivariogram defined in Eq.
Ž .7 is a valuable tool. The variograms and cross-variograms are calculated using the

Ž .GSLIB software Deutsch and Journel, 1992 .
The experimental semivariograms are modelled using the spherical, exponential and

Ž .Gaussian models Webster, 1985; McBratney and Webster, 1986 . These three different
models are used since they differ in their shape near the origin and the estimated
correlation length may differ between the different models. The spherical model is

Ž . Ž .defined by three parameters: i C , the nugget variance which represents a the spatial0
Ž .variability at distances smaller than the sampling interval, b the variability within the

Ž . Ž .sampling volume, and c the variability resulting from experimental errors, ii C , thes
Ž .structural variance, and iii a, the range. The exponential and Gaussian models are also

described by C and C , and by r, a parameter controlling the spatial range of the0 s

model.
An optimal set of parameters for each model is obtained by optimizing three

validation criteria of the jackknife procedure which estimates the value at a location x i
Ž .based on the Ny1 remaining observations using kriging Vauclin et al., 1983 . The

Ž . Ž .three validation criteria are: i the kriged averaged error KAE with an optimal value
Ž . Ž .of 0, ii the kriged reduced mean squared error KRMSE with an optimal value of 1,
Ž . Ž . Žand iii the kriged mean squared error KMSE with an optimal value of 0 Springer

and Cundy, 1987; Russo and Jury, 1987a; Mohanty et al., 1991; Mallants et al., 1996,
.among others .

2.4. Spatial correlation analysis

A major drawback of the correlation coefficient, r , is that it neglects the spatialX Y

location of the sample points. In order to account for the spatial location of the samples



( )D. Jacques et al.rJournal of Contaminant Hydrology 36 1999 31–52 37

and to study the correlation between the variables at different spatial scales, the
Ž .codispersion coefficient, r h , is used in the geostatistical analysis and is defined as:X Y

g hŽ .X Y
r h s 8Ž . Ž .X Y

g h g h( Ž . Ž .X X Y Y

Ž . Ž . Ž .where g h , g h , and g h are, respectively, the semivariance of variable XX X Y Y X Y

and Y and the cross-semivariance between X and Y at lag distance h. The codispersion
coefficient expresses the correlation between the spatial increments of the random

Ž .variables X and Y. In case of second-order stationarity, r h goes to r forX Y X Y
< < Ž .h ™` Goovaerts, 1997 . Plotting the codispersion coefficient as a function of h
provides information about the correlation between two soil properties as a function of

Ž .spatial scale Goovaerts, 1997 .
To summarize the correlation structure between all variables, the eigenvectors n of

Ž . w Ž .xthe codispersion matrices at lag distance h, P h s r h with i, js1, . . . , p and pi j
Žthe number of variables, are calculated i.e., principal component analysis; see Jobson,

.1992 . The correlation between the ith variable and the k th principal components of the
codispersion matrices are calculated by multiplying the ith element of the k th eigenvec-
tor, n , by the square root of the eigenvalue of the k th eigenvector. This correlationk j

between the variables and principal components, z ) are then plotted in the space of thek

eigenvectors or principal components corresponding with the largest and the second
Ž . Ž .largest eigenvalue of P h . Thus, variable X is plotted at n ),n ) with n ) thej 1 j 2 j 1 j

Ž .jth element of the first eigenvector corresponding to the largest eigenvalue and n )2 j
Žthe jth element of the second eigenvector corresponding to the second largest eigen-

.value . Variables clustered together are correlated with each other. These so-called circle

Table 1
Statistical moments of non-transformed and log -transformed variablese

aSand Loam Clay OC CEC K n Kf f
y1 y1Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .% % % % meq 100 g l kg y y

Original Õariables
Mean 28.7 54.2 16.4 0.71 9.555 1.17 0.92 1.25
Median 16.6 61.2 16.4 0.47 9.9 0.57 0.93 0.53

Ž .CV % 82.6 37.2 32.4 78.1 35.51 101.19 8.06 111.25
Max 90.4 72.8 30.5 2.4 16.8 4.8 1.09 6.33
Min 10.6 5.2 4.4 0.04 2.1 0.001 0.612 0.001

Log -transformed Õariablese

Mean 3.1 3.8 2.7 y0.7 2.2 y0.39 y0.09 y0.44
Median 2.8 4.1 2.80 y0.75 2.3 y0.56 y0.07 y0.64

Ž .CV % 21.1 17.4 14.2 y138.9 22.7 y145.0 y99.9 y180.1
Max 4.5 4.3 3.4 0.9 2.8 1.6 0.09 1.8
Min 2.4 1.6 y1.5 y3.2 0.74 y6.9 y0.49 y7.3

aK raised to the power 1rn.f
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Table 2
Correlation matrix for the seven variables before applying the median polish algorithm

a a a abSand Loam Clay OC CEC Kf n
aSand 1

) ) )Loam y0.957 1
) ) ) ) ) )Clay y0.545 0.497 1

a ) ) ) ) ) )OC y0.735 0.736 0.129 1
a ) ) ) ) ) ) ) ) ) ) ) )CEC y0.738 0.771 0.718 0.44 1

ab ) ) ) ) ) ) ) ) ) ) ) )K y0.652 0.677 0.051 0.719 0.351 1f
) ) ) ) ) ) ) ) ) ) ) ) ) )n y0.483 0.549 0.548 0.264 0.530 0.104 1

a Log -transformed variable.e
) ) ) ) ) ) Ž, , : significantly different from 0 at a significancy level of 0.1%, 1%, and 5%, respectively P-value

.-0.001, 0.01 and 0.05, respectively .
bRaised to the power 1rn.

of correlation allow comparison of the correlation structure between all variables at
several lag distances h.

3. Results and discussion

Table 1 summarizes some descriptive statistics for the variables used in this study.
Values were calculated using the 93 sample points and neglecting non-stationarity in the
different directions. The largest variability was exhibited by K , followed by the sandf

Ž .content and the OC. The other variables have smaller coefficients of variation CV . The
correlation matrix is given in Table 2 and the circle of correlation of the first two
principal components of the correlation matrix is plotted in Fig. 1. The sand content,
OC, CEC and K were log -transformed to obtain the same units as those used in thef e

Ž .geostatistical analysis see next section . Also indicated in Fig. 1 is the percentage of the

Ž . Ž .Fig. 1. Circle of correlation for the correlation matrix of a the original data, and b the median polished data.
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Ž .total variance explained by the first or second eigenvector Jobson, 1992 . The K f

parameter was found positively correlated with the OC and the loam. Also, clay content,
CEC and n parameter are found correlated with each other.

3.1. Analysis of data non-stationarity

For each of the seven variables, all observations used in this study are plotted against
depth in Fig. 2. For better visualization of any trends in measured data, median values at
seven layers were plotted. Most variables exhibit a nonlinear trend with depth. An
abrupt change in sand content and loam content is observed at a depth of approximately
130 cm. Both the OC and K decrease sharply near the surface and remain constant withf

depth below 60 cm. The variation of n with depth is less pronounced. A small increase
is observed at 50 cm depth for both the clay content and the CEC. The CEC also shows
a sharp decrease between 100 and 150 cm depth. These observations indicate that the
expected value of a soil property is dependent on the depth in the soil profile.
Consequently, the depth factor has to be removed to carry out a meaningful geostatisti-
cal analysis.

w Ž .The trend in the horizontal direction was investigated by estimating E Z xqh y
Ž .x Ž Ž .. Ž .Z x Eq. 2 with Vauclin et al., 1982; Berndtsson et al., 1993 :

Ž .N h1
T h s z x qh yz x 9Ž . Ž . Ž . Ž .Ý i iN hŽ . is1

Ž . Ž . w Ž .where hs x , x ,0 . Since T h is the sample mean of the random variable z x qh1 2 i
Ž .xyz x , it is approximately normally distributed by the law of large number and thei

Ž .Žcentral limit theorem. For independent identically distributed observations, T h Ny
.0.5 Ž .1 rS should be between y1.96 and q1.96 if T h is not statistically differentT Žh.

from 0 at a significancy level of 5%. In this test, we have that S is the standardT Žh.
w Ž . Ž .xdeviation of z xqh yz x and N is the number of observations. However, when

w Ž . Ž .x Ž .z xqh yz x are spatially dependent, the variance of T h is:

Var T hŽ .
1

s N Var U x,h q Covar U x ,h U x ,h i/ j 10Ž . Ž . Ž .Ž .ÝÝh h i h j2N i j

Ž . w Ž . Ž .x Ž .where U x ,h s z x qh yz x . Thus, in case of positively correlated U x ,h ,h i i i h i
Ž . w Ž .the variance of T h will be underestimated if it is based on the variance of z xqh

Ž .x Ž .yz x . So, the estimated confidence intervals around T h will be too narrow
Ž Ž . .implying that the probability of rejecting the null hypothesis T h s0 is too high.

Therefore, the proposed test should be interpreted as ‘a worst-case scenario’. Further-
more, it is not our attempt to use this test in a strict statistical way, but rather as an
exploratory tool to check the assumptions of stationarity. Therefore, we rather look at

Ž .successive points of T h as a function of h. To exclude the effect of depth, the values
Žw x.of each variable were transformed to an uniform score variable u 0,1 where us irnd

with i the position in the ranked dataset z Ž1.- . . . -z Žnd . for each depth and n thed
Ž .number of observations at a specific depth. T h was significantly different from zero
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Ž . Ž .Fig. 2. Observed depth profiles of all variables for each borehole open symbols and medians for seven depths solid circles .
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Ž . Ž . Ž .for i OC and n at large lag distances h)25 m , and ii for sand, loam, clay and
Ž . Ž .CEC for small lag distances hf0.5 m . T h was not significantly different from zero

Ž .for K results not shown .f

An in-depth analysis of the texture variables showed that the means of the boreholes
are larger than the means in the surrounding clusters at the same depth. We suspect
experimental artifact caused by different laboratories measuring texture and CEC.
Consequently, to obtain an uniform dataset, the horizontal component of the trend was
removed from all variables.

Different components of the large-scale variation were estimated with the median
polish algorithm consisting of several iterations until convergence was met, i.e., m, d ,i
and h do not change between two subsequent iterations. During the iteration procedure,j

normality and stationarity of variance were visually examined using histograms, proba-
bility plots, and median–IQ2 plots. Log -transformed variables were used whenevere

necessary. Normality was checked by means of a quantile–quantile plot where the
empirical quantiles are plotted versus the theoretical quantiles of the standard normal
probability density function and these points are compared with a robust estimate of the

Ž .expected relation Chambers et al., 1983 :

IQ
y1Q p sMedianq F p 11Ž . Ž . Ž .r 1.349

Ž . y1Ž .where Q p the theoretical reference line and ysF p is the inverse of the standardr
Ž Ž ..normal cumulative distribution function and 0FpF1 psF y . To test if deviations

Ž . Ž . 2 Ž .Fig. 3. Histogram a,d , normal probability plot b,e and median–IQ -plot c,f of the observed loam content
Ž . Ž . Ž .data a,b,c and the residuals after applying the median polish mp algorithm d,e,f .
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Ž .of the observation from Q p were significant, a robust estimate of the 95% confidencer
Ž . w Ž . Ž .x Ž .intervals around Q p were calculated as Q p "1.96 s p with s p the standardr r

error:

0.5IQ 1 p 1ypŽ .
s p s 12Ž . Ž .2 ž /'1.349 Nexp y0.5 y r 2pŽ .

where N the number of observations. Note that the estimation of the standard error is
based on the assumption of independent identical distributed random observations.

In Figs. 3–5, the histogram, the normal probability plot with estimated confidence
interval and the median–IQ2 plot at different stages during the median polish algorithm

Ž . Ž . 2 Ž .Fig. 4. Histogram a,d,g , normal probability plot b,e,h and median–IQ -plot c,f,i of the observed CEC data
Ž . Ž . Ž .a,b,c , the log -transformed data d,e,f and the residuals after applying the median polish mp algorithme
Ž .g,h,i .
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Ž . Ž . 2 Ž .Fig. 5. Histogram a,d,g , normal probability plot b,e,h and median–IQ -plot c,f,i of the observed K dataf
Ž . Ž . Ž .a,b,c , the log -transformed data d,e,f and the residuals after applying the median polish mp algorithme
Ž .g,h,i .

are given for the loam content, the CEC and the K , respectively. The median polishf

algorithm applied on the original data of the loam content, clay content and n provides a
normally distributed residual data set showing stationarity in both mean and variance.

Ž .For example, the original loam data shows a non-normal distribution Fig. 3a,b and
Ž .non-stationarity in variance Fig. 3c . After applying the median polish algorithm, the

Ž . Ž w xresiduals are i normally distributed as illustrated by the histogram Fig. 3d and the
w x. Ž . Ž .normal probability plot Fig. 3e , and ii stationary in variance Fig. 3f . Similar results

were obtained for the clay content and n. A log -transformation was required for thee

other four variables. For the CEC and the sand content, log -transformation resulted in ae
Ž .much stabilized variance e.g., CEC-data, Fig. 4c vs. f . After applying the median

polish algorithm, residuals exhibited constancy in median and followed a normal
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Fig. 6. Diagnostic plots to investigate the interaction effect in the x y x plane.1 3

Ž .distribution e.g., CEC-data, Fig. 4a,d vs. g, and Fig. 4b,e vs. h . The log -transforma-e
Žtion of OC and K resulted both in a more normally distributed data set e.g., K -data,f f

. Ž .Fig. 5b vs. e and stationarity in variance e.g., K -data, Fig. 5c vs. f .f

Subsequently, possible interactions between the horizontal and vertical effects were
investigated in the x yx , the x yx and the x yx planes. Fig. 6 shows the1 2 1 3 2 3

diagnostic plots for all variables in the x yx plane. No trends were observed for any1 3

of the variables. The estimated g -values are all smaller than 0.003 with a maximum13

R2 of 0.05. Similar observations were made in the other two planes. Therefore, all g ’si j
Ž Ž ..in the model Eq. 5 were put equal to zero. For all variables, the median polish

algorithm was successful in deriving a residual set which obeys the intrinsic hypothesis
or the second order stationarity.

3.2. Variogram analysis

Vertical variograms were estimated at six lag distances, i.e., 0.17, 0.28, 0.5, 0.84,
1.36, and 2.03 m, using 30, 62, 54, 56, 32, and 27 data pairs, respectively. Fig. 7
presents estimated variogram and fitted models for different variables. Two groups of
variograms can be distinguished. The sand, loam, clay and K variograms reveal puref

Ž .nugget. The other three variograms OC, CEC, n showed a spatial structure. Different
Ž .models spherical, exponential and Gaussian were used to describe these three vari-

ograms. As a consequence of the lack of points at both small and large lag distances, we
cannot discriminate between the three models since they behave differently at these lag

Ž .distances McBratney and Webster, 1986 . In addition, the estimates of the nugget, the
Žsill and the correlation length three parameters useful in stochastic modelling and

.sensitivity analysis of solute transport in heterogeneous field soils may be different for
the different models.
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Ž .Fig. 7. Experimental vertical semivariograms of the residuals solid circles . Decreasing dash lengths: fitted
spherical, exponential and Gaussian variogram models.

The fitted model parameters and corresponding validation criteria are given in Table
3. The validation criteria are reasonably close to their optimal values. The three models
describe the experimental variograms with approximately the same degree of accuracy.
In general, C qC for the three models are quite close to each other, although C rC0 s 0 s
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Table 3
Estimated parameters and validation criteria for the spherical and exponential models

)Ž . Ž .Variable C C a m I m KAE KMSE KRMSE0 s

Spherical model
OC 0.0900 0.2700 1.90 0.63 y0.0034 0.4209 0.9530
CEC 0.0080 0.0340 0.75 0.25 y0.0022 0.1785 0.9936
n 0.0011 0.0034 1.90 0.63 y0.0013 0.0537 1.0545

Exponential model
OC 0.0500 0.3100 0.73 y0.0048 0.4208 0.9793
CEC 0.0040 0.0400 0.40 y0.0016 0.1802 1.0486
n 0.0005 0.0044 0.73 y0.0019 0.0549 1.0839

Gaussian model
OC 0.1100 0.2400 0.81 y0.0058 0.4184 0.9829
CEC 0.0100 0.0320 0.35 y0.0030 0.1779 1.0490
n 0.0015 0.0030 0.81 y0.0014 0.0554 1.0756

Ž .differs between the three models. The correlation length scale, I) Jury et al., 1991 ,
also depends on the model used.

ŽThe contribution of the trend to the total observed variance is quantified as Russo
.and Jury, 1987b; Russo and Bouton, 1992 :

N N
22

C s m x ym rNs d x qh x , x rN 13Ž . Ž . Ž . Ž .Ý Ýd k i 3k j 1k 2 k
ks1 ks1

Ž . Ž . Žwhere x is the spatial coordinate of the k th sample and m x smqd x qh x ,k k i 3k j 1k
. Ž .x . The other two components C and C are obtained from the fitted model2 k 0 s

parameters. Estimates of the total variance and the percentage of each component in the
total variance are given in Table 4.

Except for CEC, estimated variance is larger than or equal to the observed variance
Ž .Table 1 . In the geostatistical analysis, we take into account the correlation between

Ž .nearby samples resulting in this larger variance Russo and Bouton, 1992 . The
contribution of the deterministic variation, C , was more than 85% for the four variablesd

without spatial structure and for CEC. This again confirmed the non-stationarity in the
data. A lower contribution of C was observed for the OC and n. The contribution ofd

Ž . Ž .C for all variables was low sand, loam, OC and CEC to moderate clay, K and n .0 f
Ž .For the three variables with a spatial correlation structure OC, CEC, n , C contributess

considerably to the observed variance of the trend-free data.

3.3. Correlation analysis

The result of the classical correlation analysis is given in Table 2 and plotted in Fig.
1. The correlation between the original data was high and 19 correlation coefficients

Žwere found to be significantly different from 0 at a significance level of 0.1% P-value
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Table 4
Estimated variance based on the geostatistical analysis and the contribution of different components to the total
variance

Ž . Ž . Ž .Total variance C % C % C %d 0 s

Pure nugget
Sand 0.514 93.5 6.5 –
Loam 400.03 94.7 5.3 –
Clay 42.92 88.0 12.0 –
K 1.780 85.1 14.9 –f

Spherical model
OC 1.507 76.0 6.0 18.0
CEC 0.292 85.6 2.7 11.7
n 0.0078 42.3 14.1 43.6

Exponential model
OC 1.507 76.0 3.3 20.7
CEC 0.294 85.0 1.4 13.6
n 0.0082 40.2 6.1 53.7

Gaussian Model
OC 1.497 76.6 7.3 16.1
CEC 0.292 85.6 3.4 11
n 0.0078 42.3 19.1 38.6

.-0.001, Table 2 . However, the classical analysis neglects the spatial location of the
sample points and the trend with depth. In this section, the residuals and the cross-vario-
grams are used to explore further the correlation coefficients between the variables at
different spatial scales.

Correlation coefficients between the residuals were lower than the ones in Table 2
and only four correlation coefficients are significantly different from 0 at a significancy

Ž . Ž . Ž .level of 0.1% P-value -0.001 and one at 1% K -CEC P-value -0.01 . Negativef
Ž .correlation coefficients were found between sand and loam content y0.75 , and sand

Ž . Ž . Ž .content and K y0.37 . The clay content and CEC 0.37 , loam content and K 0.60f f
Ž .and CEC and K 0.31 were positively correlated. This indicates that the trend in thef

vertical direction has an important influence on the correlation coefficient between the
soil properties. As a consequence, the first principal component of the residuals explains

Ž .a smaller percentage of the total variance only 32%, Fig. 1b .
The correlation between soil properties may depend on the spatial scale, as was

Ž .shown by Goovaerts 1997 . One way to express this relation is by defining a
Ž Ž ..codispersion correlation coefficient Eq. 8 : if the codispersion between the variables is

constant for different lag distances, the correlation structure of the variables is not
Ž .affected by spatial scale Wackernagel, 1995 . A positive codispersion correlation

coefficient at a lag distance h means that an increase in one of the variables over a lag
distance h corresponds with an increase in the other variable over the same lag distance.
To calculate the codispersion correlation coefficients, the experimental cross-variograms
between all variables were calculated in the vertical direction at the same six lag



( )D. Jacques et al.rJournal of Contaminant Hydrology 36 1999 31–5248

Ž .distances results not shown . Since the units are different between the variables, the
residuals were standardized to zero mean and unit variance. Most of the experimental

Ž .cross-variograms were irregular. These irregularities may be due to i poor spatial
Ž . Ž . Ž .correlation of the variable s , and ii small codispersion coefficients Goovaerts, 1997 .

To investigate the correlation between different variables, the principal components
of the codispersion correlation matrix were calculated for each lag distance and the

Ž .circle of correlation was constructed for each lag distance Fig. 8 . Apparently, the
correlation structure between the variables changes considerably between different
spatial increments h. This is probably due to the irregular experimental cross-vario-
grams and relative small sample size used in this study. However, some interesting
observations were made. An important observation is that K is positively correlatedf

Ž .with OC at almost all spatial increments except at hs0.5 . The codispersion correla-
Ž .tion coefficient between K and OC ranges between 0.24 at hs2.03 and hs0.841f

Ž .and 0.44 hs1.356 . Furthermore, variables appeared to be correlated with each other
when the spatial location of the observation is accounted for. At the smallest lag distance
Ž . Ž .hs0.173 , we observe a strong correlation between clay content, CEC and n Fig. 8a .

Ž .At larger lag distances hs0.283 and hs0.5 , the correlation between clay content
and CEC remains where n is no longer correlated with these two variables. In the largest

Ž .two lag distances hs2.03 , we observed no correlation between clay content and
Ž Ž . .CEC, whereas n is strongly correlated with clay content r 2.03 s0.40 . In theX Y

Ž .classical correlation analysis neglecting the spatial locations , no strong correlation was
observed between median-polished residuals of the clay content and CEC on one side
and n on the other side. Note that the correlation between clay content and n or between
K and OC is present in the residuals.f

Fig. 8. Circle of correlation of the codispersion matrix at six spatial increments.
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4. Conclusions

The spatial variability of the parameters of the Freundlich isotherm for atrazine has
been characterized using the theory of regionalized variables. Given the trend with depth
of all variables, the analysis required methods that can handle these non-stationary

Ž .effects. The correlation of the sorption parameters with some physical texture , chemi-
Ž . Ž .cal CEC and biological OC properties of soil has also been investigated.

A significant part of the observed variability of all soil properties results from
deterministic variation in the vertical direction and, to a lesser extent, in the horizontal
direction. We found that the large-scale variability was responsible for more than 85%
of the observed variance for most variables. Removing the deterministic component
results in residuals that correlate much less with each other than the original data.

ŽTherefore, the estimation of K and n from basic soil properties such as texture, OCf
.and CEC should be restricted to the determination of large-scale deterministic variabil-

Ž .ity e.g., soil layers or different soil types . Due to the low correlation coefficients
between the residuals of the basic soil properties and the residuals of the AT sorption
parameters, it is not possible to obtain an exact picture of the actual small-scale
heterogeneity of K and n using regression equations based on the measured basic soilf

properties in this study.
The experimental vertical semivariograms of the residuals of OC, CEC, and n

showed a spatial correlation structure. The estimated correlation length scale depends on
the variogram model and ranged between 0.25–0.40 m for CEC and 0.63–0.81 m for
OC and n. The vertical variograms of the texture variables and K revealed puref

nugget. The codispersion coefficients, which express the correlation between two
variables over a spatial increment h, change considerably between the different spatial
increments.

Ž .The data on i the spatial correlation of atrazine sorption parameters and soil
Ž .properties, and ii spatial correlation between soil properties such as presented in this

study, will be useful in future stochastic analysis of solute transport in heterogeneous
soils. Note that the study was performed using a limited data set and for one field site
with a specific geological profile. Applicability of the statistical parameters to predict
the behaviour of atrazine in other field plots is thus questionable. However, the

Ž .presented statistics can be included in a databank containing distributions cf. Table 1 ,
Ž . Žcorrelations cf. Table 2 , correlation lengths for different variogram models cf. Table

. Ž .3 and contributions of different factors to the variance cf. Table 4 of soil properties
related to reactive contaminant transport for a range of different soil types. The results of

Žthis and other similar studies i.e., the statistical parameters of the multivariate probabil-
.ity density function and the covariance functions of the atrazine adsorption parameters

can be used in theoretical studies based on unconditional Monte-Carlo simulations of
Ž .reactive transport under un saturated steady-statertransient flow conditions in spatially

correlated heterogeneous multidimensional random fields. Such theoretical studies may
contribute to our understanding of factors influencing the plume movement in soils with
variable properties. In this way, the relation between the observed variability of
local-scale adsorption parameters and the effective field-scale transport parameters
describing the retardation and the dispersion of a reactive solute plume can be
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investigated and quantified similar to studies with variability of soil hydraulic properties
Ž .e.g., Roth and Hammel, 1996; Vanderborght et al., 1997 .
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