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Abstract

Electromagnetic induction (EM) is a commonly used tool for non-invasive mapping of apparent soil
electrical conductivity (ECa). In this paper, we examine three applications of EM surveying used in arid
southwestern US agriculture: repetitive salinity mapping, soil texture mapping, and locating buried
tile lines. The basic statistical modeling techniques associated with each application are described and
then demonstrated using data from three different field survey projects. In the first study, pre- and post-
EM surveys are used to quantify the degree of salt removal from a field leaching event. These survey
results demonstrate that the degree of salt removal was spatially variable and that the leaching process
was not successful in sub-areas of the field that exhibited high pre-survey salinity concentration levels.
The second study demonstrates the use of EM survey data for precision soil texture mapping under
non-saline conditions, and illustrates how texture prediction maps can be generated from EM survey
data. The final study represents an example of how EM survey data can be used to precisely locate the
positions of buried tile lines. In this latter study, two different EM survey data sets that were collected 1
year apart produced estimates of tile line positions within 1 m of each other, validating the reliability
and repeatability of the proposed tile line identification strategy. These projects demonstrate three

Abbreviations:ECa, apparent soil electrical conductivity; EM, electromagnetic induction;Hi , magnetic field;
Hp, primary magnetic field; Tx, transmitting coil; Rx, receiving coil; EMV, vertical EM sensor reading; EMH,
horizontal EM sensor reading; ANOCOVA, analysis of covariance

∗ Corresponding author.
E-mail address:slesch@ussl.ars.usda.gov (S.M. Lesch).

0168-1699/$ – see front matter. Published by Elsevier B.V.
doi:10.1016/j.compag.2004.11.007



352 S.M. Lesch et al. / Computers and Electronics in Agriculture 46 (2005) 351–378

applications of ECa surveying techniques used to derive spatial information that aids in the effective
management of agricultural fields.
Published by Elsevier B.V.
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1. Introduction

Spatial maps of soil properties are invaluable in agriculture for assessing soil quality,
planning land use, and determining the suitability of cropping patterns. Apparent soil elec-
trical conductivity (ECa) survey information has been widely used in agriculture to measure
various soil physico-chemical properties. Techniques for predicting soil salinity from ECa
survey data have been discussed by numerous authors, includingWilliams and Baker (1982),
Rhoades et al. (1989, 1999), Hendrickx et al. (1992), Rhoades (1992, 1996), andLesch et
al. (1995a). Other soil properties that have also been successfully mapped using ECa data
include clay content (Williams and Hoey, 1987), depth to clay layers (Doolittle et al., 1994),
and moisture content (Sheets and Hendrickx, 1995; Kachanoski et al., 1988). Additionally,
yield potential has been shown to be directly related to ECa data in many applications
(Jaynes et al., 1993; Sudduth et al., 1995; Kitchen et al., 1999; Johnson et al., 2003).

The intensive spatial information acquired from a typical ECa survey is uniquely suited
for supplying comprehensive feedback on various agricultural management practices, as
well as detailed baseline data for precision farming strategies.Rhoades et al. (1997)dis-
cussed how ECa survey information can be used to determine salt loading and field irrigation
efficiency andTriantafilis et al. (1998)described a method for estimating deep drainage from
ECa data. Additionally, various authors have discussed the use and/or interpretation of con-
ductivity survey information for precision farming applications (Plant, 2001; Corwin and
Lesch, 2003; Johnson et al., 2003; Lesch and Corwin, 2003).

Direct contact four-electrode systems and non-invasive electromagnetic induction meters
tend to be the most frequently used survey instruments for acquiring ECa data. In this
paper, we focus on the latter class of instruments, specifically the Geonics EM38 meter.1

The primary objective is to show three current applications of the use of electromagnetic
induction (EM) survey data in arid southwestern US agriculture. These applications include
(1) the mapping and monitoring of soil salinity during a reclamation (leaching) event, (2) soil
texture mapping and soil type classification, and (3) identifying and locating buried tile lines.

2. Theory

2.1. EM38 principals of operation

A schematic diagram of the EM38 and its associated electromagnetic fields is presented
in Fig. 1. A primary magnetic field (Hp) is induced from a transmitting coil (Tx) at one end

1 Mention of trademark or proprietary products in this manuscript does not constitute a guarantee or warranty
of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other
products that may also be suitable.
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Fig. 1. Diagram of an EM38 meter showing the principles of operation.

of the sensor, this field creates current loops in the ground below and in turn the current loops
induce their own magnetic field (Hi ). The induced secondary field is superimposed on the
primary field and bothHp andHi are measured in a receiving coil (Rx) at the other end of the
sensor (McNeill, 1980). The measured response reflects a nearly linear function of ground
conductivity below about 100 mS/m. The meter is designed to be held (or placed) in either
a vertical or horizontal orientation; this orientation in turn controls the signal penetration
depth and depth weighting response pattern. In a homogeneous soil profile, the vertical
(EMV) signal penetrates to a depth of 1.5–2 m, while the horizontal (EMH) signal primarily
reflects the more shallow soil zone (0.75–1.0 m).

Although the EM38 is designed to be used manually, it can easily be incorporated into a
mobilized surveying system that simultaneously collects geo-referenced coordinate location
data using a global positioning system (GPS). Examples of such mobilized soil conductivity
assessment (MSCA) systems have been described previously in the literature (Carter et al.,
1993; Kitchen et al., 1996; Rhoades et al., 1999). These systems have recently be-
come more common, given the introduction of the dual EM38 system (a combined,
two-meter system capable of collecting both EMV and EMH data simultaneously).
More importantly, these systems facilitate the collection of detailed ECa information in
manageable amounts of time, thus greatly increasing the spatial resolution of the EM survey
map(s).

The conversion of ECa survey data into soil salinity can be performed either statistically
or deterministically. The statistical approach relies on targeted sampling strategies and either
geostatistical or spatial regression calibration models (Lesch et al., 1995a, 1995b; Lesch,
2005). This approach can also be effectively used to estimate other soil properties from
ECa survey data, provided that calibration soil samples are acquired and the survey data are
found to be well correlated with the target soil property of interest. In contrast, deterministic
approaches normally use pre-specified functional or deterministic soil conductivity models.
Such models generally do not require the collection of calibration soil sample data, but do
require accurate site-specific information about secondary soil properties known to influence
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soil conductivity, such as soil texture and water content (Rhoades et al., 1989; Lesch and
Corwin, 2003). In the discussion that follows, the statistical approach will be emphasized.

2.2. The prediction of soil properties from EM survey data

Site-specific prediction of diverse soil properties from EM survey data can be achieved
using statistical calibration and prediction techniques. In the regression-based calibration
approach advocated byLesch et al. (1995a), a suitable regression model is specified that
relates the target soil property of interest to a transformed linear combination of conductivity
signal data readings and (possibly) trend surface coordinates. One example of such a model
would be:

y = β0 + β1[z1] + β2[z2] + β3[cX] + β4[cY ] + ε (1)

where the response variable (y) represents the soil property of interest (i.e., salinity, texture,
water content, etc.);z1 = (EMV + EMH)/2 andz2 = (EMV − EMH)/2 represent the average
response and normalized difference of the EM signal data;cX andcY represent the associ-
ated coordinate locations;βj parameters represent empirical regression model coefficients,
andε represents the random error component associated with the model. In Eq.(1), the
EM readings are linearly transformed in order to reduce the effects of multicollinearity; a
problem that arises whenever the raw signal readings are highly correlated. Such a trans-
formation does not increase the accuracy of the regression model, but it does increase the
precision of the standard error estimates associated with the transformed regressor variables
(Myers, 1986; Cook and Weisberg, 1999). In certain situations, the EM data may also be
log transformed (to make the signal data distributions more symmetric), before this linear
transformation is applied.

Eq. (1) relates the response variable (i.e., soil property) to both EM signal and trend
surface components, and thus can be viewed as a “signal + trend” model. The trend surface
components specified in Eq.(1) are optional, and should only be included if they are found
to be necessary (i.e., if the associated parameter estimates are statistically significant or if the
inclusion of such components is needed to address an obvious spatial trend in a residual plot,
etc.). Additionally, the second transformed signal component (the normalized difference)
can also be removed from the model if it is both (i) non-significant, and (ii) the removal of
this parameter results in a more accurate prediction model. The most common way to assess
prediction accuracy is via a jack-knifing analysis; i.e., by comparing the prediction sum of
squares (PRESS) statistics for competing regression models and selecting the model with
the smallest PRESS score (Myers, 1986; Cook and Weisberg, 1999). Relying on both sets of
statistics for parameter selection is more appropriate (then relying just on significance tests),
since the ultimate goal of the modeling process is to identify the best prediction function.

The optimal estimation of the above (or similar) regression model depends on the as-
sumptions placed on the random error component. If the errors are assumed to exhibit spatial
correlation, then Eq.(1) is commonly called a spatial linear regression model in the statis-
tical literature, or a kirging with external drift model in the geostatistical literature (Royle
and Berliner, 1999). Such models can be efficiently estimated using maximum likelihood or
restricted maximum likelihood fitting techniques (Littell et al., 1996). In contrast, if the er-
rors can be assumed to be (at least approximately) independent, then ordinary least squares
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(OLS) fitting techniques can be used. In this latter case, the model becomes identical to
an ordinary linear regression equation, the only difference being that the predictions are
spatially referenced.

The likelihood of the residual errors being approximately independent (as opposed to
spatially correlated) depends primarily on (i) the method used to select the calibration
sample sites, and (ii) the degree to which the conductivity signal data correlates with the
response variable of interest. When the signal data are strongly correlated with the target soil
property and specialized sampling strategies are employed, the assumption of approximate
residual independence is often satisfied. For a detailed discussion concerning these issues
seeLesch (2005).

Although appropriate prediction statistics can be derived for either case, only the OLS
results are presented throughout this paper. Individual point and range interval predictions
are presented first, and then extended to include the prediction of field average estimates
and average range interval estimates. All results are presented in matrix notation; a good
review of matrix notation from a regression modeling viewpoint is given inMyers (1986).

2.2.1. Individual point (survey site) predictions
DefineX to be the regression model design matrix, andxi to be the regression vector

associated with theith prediction site. Additionally, letb represent the estimated regression
parameter vector, and ˆyi represent the (possibly log transformed) predicted soil property
at theith prediction site. The following results can then be derived from standard general
linear modeling theory:

ŷi = x′
ib (2)

var(yi − ŷi) = θ2 = σ2(1 + x′
i(X

′X)−1xi) (3)

where var(yi − ŷi) represents the expected prediction variance andσ2 represents the regres-
sion model mean square error (MSE) term (Myers, 1986; Graybill, 1976). Additionally,
from a Bayesian perspective, one can view the regression model prediction as a random
variable having a mean of ˆy and a variance ofθ2, (Press, 1989, assuming a vague prior
distribution). In turn, this implies that the probability thaty lies within the interval (a, b) can
be computed by integrating over at-distribution fromg1 = ((a− ŷ)/θ) to g2 = ((b− ŷ)/θ).
Mathematically, this integration can be written as:

πi,[a,b] = Probability(a ≤ yi ≤ b) =
∫

g1,g2

t(n − p)dt (4)

wheret(n–p) represents at-distribution havingn–pdegrees of freedom (i.e., the regression
model residual degrees of freedom). Thus, Eq.(2) represents the regression model point
prediction, and Eq.(3)can be used to determine the variance associated with this prediction.
Likewise, Eq.(4) can be used to determine the probability that the true soil property level
actually lies within the interval (a,b).

If a log transformation has been applied to the soil property being modeled, a back-
transformed geometric point estimate can be calculated as:

BT-geometric estimate= exp(x′
ib) (5)
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For example, maps made from back-transformed geometric salinity estimates are referred
to as “geometric salinity distribution maps” byLesch et al. (1995a). If needed, a method-
of-moment estimate of the arithmetic point estimate can also be calculated,

BT-arithmetic estimate= exp(x′
ib + 0.5θ2) (6)

2.2.2. Field average prediction estimates
In addition to generating point predictions, a regression model can also be used to make

global (field) average estimates. These field summary statistics include the (i) mean estimate
of the soil property across the survey grid and (ii) field average range interval estimates
associated with the grid.

An average estimate for either the entire survey grid or some specific subsection of the
survey grid can be directly calculated via the estimated regression model. Definexave to be
the average of theN regression vectors associated with the non-sampled sites on the grid sub-
section of interest. Then the estimate for the average mean level and associated variance is:

ŷave = x′
aveb (7)

var(yave− ŷave) = θ2
ave = σ2

(
1

N
+ x′

ave(X
′X)−1xave

)
(8)

When one or more calibration sample locations fall within the grid subsection, Eq.(8)
can be modified to include a finite-correction factor. However, in a typical survey where
the number of prediction sites is much larger that the number of calibration sites (N�n),
the effect of such a correction is usually trivial. Note also that Eqs.(7) and(8) implicitly
assume that the survey data has been collected uniformly across the area of interest.

Along with the global mean estimate, the proportion of sites on the survey grid with soil
property levels above, below, and/or within a specific range is also often of interest. Such
estimates are referred to as field average range interval estimates (Lesch et al., 1995a). The
previously discussed individual probability intervals can be used to calculate such estimates.
These estimates adjust out the “shrinkage effect” inherent in the associated regression model
predictions. Mathematically, a range interval estimate (RIE [a,b]) for a survey area (for any
given range interval with endpointsa andb) can be calculated as:

RIE[a, b] =
(

100

N

) 
 ∑

i=1,N

(
πi,[a,b]

)

 (9)

whereπi,[a,b] was defined previously in Eq.(4).
The calculation of an exact variance for(9) is extremely difficult, due to the nonlinear

nature of the probability interval estimate. However, an approximate variance estimate
can be calculated from the jack-knifed REI [a,b] estimates, using the standard jack-knife
variance formula (Thompson, 1992). All REI standard error estimates presented in this
study have been calculated in this manner.
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2.3. Tile line mapping

Cyclic patterns in EM survey data are often observed in many saline or semi-saline
agricultural fields, and generally indicate the presence of buried tile lines (Rhoades et al.,
1997). Both the reduction in water content and the leaching of salts directly over the tile
lines tends to produce a sharp drop-off in the EM signal response. In turn, this produces a
cyclic EM conductivity pattern down the transect with the local minimum levels occurring
over the tile lines. When a series of linear transects are obtained across a field, these cyclic
patterns can be de-trended, analyzed, and used to map out the tile line positions.

The actual mapping of tile lines can be performed by (i) identifying the local minima
within the field, (ii) assigning these minima to individual tile lines, and (iii) estimating
an appropriately specified analysis of covariance (ANOCOVA) model that algebraically
defines the tile line positions in two-dimensional space. Some brief details associated with
each step are outlined below.

Step 1:Identifying the local minima.
1.a apply a smoothing algorithm to each vector of EM transect data;
1.b compute the difference between the raw and smoothed EM data (this difference data

is referred to as “filtered” data, respectively);
1.c identify the minima positions from the filtered data using a suitable search algorithm.
Step 2:Assignment of the minima to specific tile lines.
2.a using a suitable interactive graphics environment, identify each set of minima that

form linear patterns (i.e., lines) across the field;
2.b associate each set of points that form a distinct linear pattern into a common group

(this set of points defines a probable tile line).
Step 3:Define and estimate the ANOCOVA model.
3.a Determine the type of line equations that the ANOCOVA model must estimate; i.e.,

y=mx+b or x=my+b.
3.b If the tile lines can be assumed to be parallel, simultaneously estimate the positions

of all the tile lines using an ANOCOVA model defined asz=αj +β(w), where (z)
represents the coordinate data treated as the response variable, (w) represents the
coordinate data used as the predictor variable, theαj ’s represent the unique intercepts
for thek identified tile lines (j = 1,. . .,k) andβ represents the common slope estimate.

The process outlined above has been implemented in the ESAP Software Package, Ver-
sion 2.30 (Lesch et al., 2000).2 Equivalently, it can be performed using suitable GIS and
statistical software. Numerous filtering techniques can be used in Step 1, but an ordinary
moving average estimate should be more than adequate for most situations. Once the filtered
EM transect data has been computed, local minimums can be found using a simple search
algorithm. In ESAP, a local minimum is defined to be any filtered EM reading that is both
negative and consistently lower than each adjacent filtered reading (located to either side
of the current reading).

2 ESAP is public domain software and can be obtained from the George E. Brown Jr. Salinity Laboratory web
site (www.ussl.ars.usda.gov).

http://www.ussl.ars.usda.gov/
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Step 2.b is referred to as “tile line threading”, since a line is essentially threaded through
a linear pattern of points. This process is best accomplished in an interactive graphics
environment that allows one to manually define a line through each apparent linear pattern.
A simple point-to-line distance algorithm can then be used to assign minima to unique lines
(i.e., all points that lie within a specific distance to a particular line segment get assigned
into the same group).

Once a suitable set of points have been assigned to a series of probable lines, the
ANOCOVA model can be used to optimize the apparent tile line locations. The purpose
of this analysis is to estimate the tile line equations; these equations can in turn be used to
predict coordinate positions in one dimension from their associated positions in the other
dimension. For example, if the tile lines run predominantly east–west, then one would adopt
they=mx+b form of the equation and thus predict they-coordinate from thex-coordinate.
Note that a unique intercept is estimated for each line, and the common slope parameter
is appropriate if all of the tile lines are assumed to be parallel (this latter assumption can
be tested statistically). Outside of re-scaling the GPS coordinate data to avoid possible nu-
merical estimation problems, this estimation technique is carried out exactly like a standard
ANOCOVA analysis.

If the tile lines are not laid out parallel to one another, then a unique slope parameter can be
incorporated into the ANOCOVA model for each line. Alternatively, if the functional form
of the tile line equation changes across lines, then each line can be estimated individually.

3. Materials and methods

Survey data from three fields are presented in this report to demonstrate both soil property
and tile line mapping techniques. All of the analyses preformed on these fields (designated
as CV5, M22, and IV376) were carried out using the ESAP Software Suite, Versions 2.01
and 2.30 (Lesch et al., 2000) and SAS, Version 8 (SAS Institute Inc., 1999). A site map of
the field project locations is shown inFig. 2; pertinent details concerning each field survey
are given below.

3.1. Case study 1 (CV5): pre- versus post-leaching salinity mapping

Field CV5 is a 13 ha agricultural field located in Coachella Valley, CA. This field had
been brought back into production in 1999, after sitting idle for approximately 8 years. The
NRCS soil classification map (USDA, 1980) for this field indicated the presence of four
similar soil types, all consisting of fine to very fine sandy loam surface material and sandy
loam subsurface material stratified with silt lenses and silt plates (sandy, mixed hyperthermic
Typic Torrifluvents). A winter wheat crop grown in 1999 showed signs of poor growth areas,
believed to be due to excessive soil salinity (personal communication, landowner). Due to
this yield reduction, the landowner elected to fallow, disk, and leach this field in the summer
of 2000, and requested both pre- and post-leaching salinity survey data in order to appraise
the leaching process.

Two independent EM/salinity surveys were performed in Field CV5 in May and Au-
gust, 2000 by Salinity Laboratory and Coachella Valley Resource Conservation District
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Fig. 2. Site map of California and Arizona field project locations.

personnel. Each survey was performed using a dual EM38 system mounted to a MSCA
platform. The pre-leaching survey was performed in May, after the field had been fine
disked, laser leveled, and floated. This first survey consisted of 1615 pairs of horizontal
and vertical EM38 readings collected across 33 southwest–northeast transects, with each
transect spaced approximately 18 m apart. The post-leaching survey was performed in Au-
gust, approximately 4 weeks after the last cycle of leaching water had infiltrated the soil.
This second survey consisted of 1569 pairs of horizontal and vertical EM38 readings col-
lected across 40 east–west transects, with each transect spaced approximately 10 m apart.
Co-located differential GPS coordinate information was obtained at all sites during both
surveys using a Trimble Pro-XRS GPS system with sub-meter accuracy. Both sets of sur-
vey data were independently processed using the ESAP-RSSD software program, and two
(non-overlapping) 12 site calibration sampling plans were generated.

The leaching process began approximately 2 weeks after the first survey was completed
and continued intermittently for 6 weeks. Approximately 7.9 ha m of Colorado river water
(electrical conductivity of the saturation extract (ECe) ≈ 1.1 dS/m) was applied to the field
using a sequential, spill-over basin design (i.e., a design where water is flooded into the
first basin and allowed to fill adjacent basins via the use of hand operated gates). The
basins were approximately 18-m wide and 380-m long, and orientated in a predominantly
east–west direction. No evidence of basin erosion was observed during the leaching process.
However, about 2 ha m of the applied water was estimated to have evaporated, based on local
pan evaporation measurements collected during the same time frame.

Soil cores at 12 distinct sampling locations were collected down to a depth of 1.2 m
during both surveys. Each soil core was split into two 60-cm samples and analyzed for



360 S.M. Lesch et al. / Computers and Electronics in Agriculture 46 (2005) 351–378

salinity (ECe, dS/m), soil saturation percentage (SP), and gravimetric soil water content
(2g, kg/kg). The primary goal of this study was to model the EM/salinity relationship(s)
and produce depth-specific pre- versus post-leaching spatial salinity maps and field average
statistics (in order to quantify the effectiveness of the leaching process).

3.2. Case study 2 (M22): soil texture (% clay) mapping

Field M22 is a 7-ha experimental research field located at the Maricopa Agricultural
Center in Maricopa, Arizona. This field had been used to grow cotton during the previous
three growing seasons, and was surveyed by Salinity Laboratory personnel in April, 2002.
Immediately before the survey took place, M22 was rough disked and a 1.02 m bed-furrow
system had been put in place across the field. These beds were not topped or planted, but the
general bed shape was consistent across the field. The near surface (0–30 cm) soil moisture
level was well below field capacity, but still sufficient for performing the EM survey.

A total of 2518 pairs of horizontal and vertical EM-38 readings were collected across
57 distinct east–west transects, with each transect spaced 7.1 m (7 rows) apart. Collocated
differential GPS coordinate information was obtained at each survey site using a Trimble
Pro-XRS GPS system having sub-meter accuracy. This survey data was then processed using
the ESAP-RSSD software program, and a 12 site calibration sampling plan was generated.
Soil sample cores were retrieved at these 12 sites down to a depth of 90 cm and analyzed
for salinity (ECe, dS/m), soil texture (% sand, silt, and clay), saturation percentage (SP),
gravimetric soil water content (2g, kg/kg, and cations in the saturation extract (Na, Ca, Mg,
K; meq/L).

The primary purpose of the EM survey and soil sampling in Field M22 was to delineate
the apparent spatial variation in soil texture across the plot. This field was known a priori
to be non-saline and texturally variable, thus we expected the EM survey data to be pre-
dominantly influenced by variation in the soil texture and water content levels. The NRCS
soil classification map (USDA, 1984) for this field indicated the presence of two soil types;
Casa Grande clay loam (fine-loamy, mixed, hyperthermic Typic Natrargids) and Mohall
sandy loam (fine-loamy, mixed, hyperthermic, Typic Haplargids), with the Mohall soil type
occurring in the north–east portion of the field. Additionally, the presence of both soil types
had been confirmed by previous soil sampling studies performed in this field.

3.3. Case study 3 (IV376): tile line mapping

Field IV376 is a 64-ha field located in Imperial Valley, California, that has supported
permanent bedded alfalfa since 1999. Multiple EM surveys have been performed in this field
since early 2001, as part of a district wide salinity-monitoring program. This field contains
10 tile lines that exhibit a pronounced influence on the apparent magnitude of the spatial
EM signal pattern. These tile lines are orientated east to west, and were installed at a depth
of 2.44 m. According to the installation records on file at the Imperial Irrigation district,
seven east–west lines were originally installed in Field IV376 at a spacing of 106.68 m.
Approximately 10 years after the original seven lines were installed, three additional lines
were “split” into the northern section of this field (thus reducing the tile line spacing in the
northern half of the field to 53.34 m). In this manuscript, we analyze the EM survey data
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from two prior surveys (July 2002 and August 2001), and use this data to infer both the
precise positions of these lines and the repeatability of the tile line mapping process.

In the August 2001 survey, 7469 EM readings were acquired across 31 distinct
north–south EM transects within IV376. These transects were spaced approximately 25 m
apart, and distinct EM signal data were acquired approximately every 3.1 m. In the July 2002
survey, 5603 EM readings were acquired across 24 distinct north–south EM transects. These
transects were spaced approximately 32 m apart, and EM signal data were acquired approx-
imately every 3.2 m. Since the mapping of tile lines can be done directly from EM survey
data, the associated soil salinity calibration sample data from this field will not be discussed.
Additionally, only the EMV signal data is used in the analysis, since the deeper penetrating
EMV signal tends to produce more reliable results in most tile line mapping applications.

4. Results and discussion

4.1. Pre- versus post-leaching salinity study (Field CV5)

Table 1presents descriptive EM38 summary statistics for both surveys performed in
Field CV5. The means and standard deviations of the EMV and EMH signal readings are
reasonably similar across time frames. The correlation between the vertical and horizontal
signal data in each time frame is extremely high (r ≈ 0.98 in each survey, after applying a
natural log transformation). Both the EM vertical and horizontal signal data exhibit marked
skewness in each survey data set, as shown by the quantile statistics.

The spatial maps of the pre- versus post-leaching EM survey data look extremely similar.
Fig. 3a and b show the observed pre- and post-leaching EMV signal maps, respectively, along
with the locations of the 12 calibration sample sites in each survey process. The similarity
in the EMH signal maps (not shown) is just as striking.

Table 1
EM38 summary statistics for Field CV5, pre- and post-leaching surveys

Pre-leaching survey Post-leaching survey

EMV (mS/m) EMH (mS/m) EMV (mS/m) EMH (mS/m)

N 1615 1615 1569 1569
Mean 131.25 93.14 130.38 100.43
Standard deviation 75.94 56.30 87.69 67.13

Quantiles
Minimum 44.0 26.0 24.0 26.0
q10 60.0 43.0 49.0 43.0
q25 76.0 53.0 64.0 53.0
Median 108.0 74.0 100.0 77.0
q75 166.0 115.0 172.0 129.0
q90 238.0 169.0 253.0 190.0
Maximum 586.0 501.0 712.0 634.0

Correlation
Corr (ln (EMV), ln (EMH)) 0.979 0.984
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Fig. 3. Observed (a) pre- and (b) post-leaching EMV signal patterns in Field CV5, with the 12 calibration sample
site locations identified for each time frame.
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Table 2
Calibration soil sample summary statistics for Field CV5, pre- and post-leaching surveys

Soil Property Depth level (cm) Mean Standard deviation Minimum Maximum

Pre-leaching soil sample data statistics
ECe (dS/m) 0–60 6.77 9.61 0.68 35.10

60–120 9.48 11.99 1.28 34.65

SP (%) 0–60 41.09 6.34 33.44 52.42
60–120 43.56 7.38 31.19 56.78

θv (ratio)a 0–60 0.216 0.073 0.078 0.308
60–120 0.311 0.097 0.136 0.409

Post-leaching soil sample data statistics
ECe (dS/m) 0–60 4.93 4.86 0.60 13.44

60–120 8.29 10.62 0.65 39.15

SP (%) 0–60 40.45 5.07 33.67 49.63
60–120 45.04 8.05 31.12 62.60

θv (ratio) 0–60 0.224 0.082 0.095 0.344
60–120 0.308 0.096 0.158 0.488

a Estimated fromθg and calculated bulk density, where the bulk density was calculated from the measured SP.

Table 2shows the calibration soil sample summary statistics associated with each survey.
These statistics include the mean, standard deviation, minimum and maximum levels for the
measured ECe, SP, and estimatedθv for the 0–60 and 60–120 cm sampling depths. Like the
EM signal data, the salinity data distributions also appeared to be significantly asymmetrical
(i.e., right-skewed).

In this study, the goal was to predict the pre- and post-leaching spatial salinity patterns in
CV5 from the corresponding EM survey data. Given the clearly asymmetric distributions,
we initially fit a log/log regression model defined as:

ln(ECe) = β0 + β1(w1) + β2(w2) + ε (10.1)

to each sample depth and time frame, wherew1 = (ln(EMV) + (ln(EMH))/2 andw2 =
(ln(EMV) − (ln(EMH))/2. However, an assessment of the PRESS scores suggested that
the β2 parameter could be dropped from the post-leaching models, so the post-leaching
regression function was redefined to be:

ln(ECe) = β0 + β1(w1) + ε (10.2)

The corresponding regression model summary statistics and parameter estimates for Eqs.
(10.1)and(10.2)are shown inTable 3. TheR2 values for all four models are between 0.87
and 0.91, suggesting that about 90% of the observed variation in the log salinity data at each
sampling depth can be explained by the log transformed EM signal data from each survey.

The four regression models shown inTable 3were then used to calculate the field
summary statistics and range interval estimates using Eqs.(7)–(9) for each sample depth
and time frame. These results are shown inTable 4. The individual point predictions were
also used to create predicted salinity maps; the 0–60 cm pre- and post-leaching predicted
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Table 3
Regression model summary statistics for Field CV5, pre- and post-leaching surveys

Pre-leaching models Post-leaching models

(0–60 cm) (60–120 cm) (0–60 cm) (60–120 cm)

R2 0.906 0.870 0.896 0.895
MSE 0.142 0.233 0.148 0.134

Depth Estimate Standard error t-Score Prob >|t|
Pre-leaching parameter estimates (E(y) =β0 +β1z1 +β2z2)

0–60 (cm)
β0 −4.49 0.82 −5.50 <.001
β1 1.38 0.16 8.68 <.001
β2 3.29 1.53 2.14 0.061

60–120 (cm)
β0 −6.10 1.05 −5.83 <.001
β1 1.58 0.20 7.76 <.001
β2 −2.22 1.96 −1.14 0.285

Post-leaching parameter estimates (E(y) =β0 +β1z1)
0–60 (cm)

β0 −5.55 0.72 −7.72 <.001
β1 1.45 0.16 9.30 <.001

60–120 (cm)
β0 −4.66 0.68 −6.81 <.001
β1 1.37 0.15 9.21 <.001

spatial ECe maps are shown inFig. 4a and b, respectively. These field statistics and maps
can be used to evaluate the success of the leaching process.

As shown inTable 4, the leaching process slightly lowered the 0–60 cm geometric
mean salinity level from an estimated 3.40 to 2.91 dS/m (an 16.8% reduction). Like-
wise, a similar increase in the 60–120 cm geometric mean salinity level occurred (i.e.,

Table 4
Field average prediction statistics for Field CV5, pre- and post-leaching surveys

Depth (cm) Pre-leaching survey geo-mean (95% CI) Post-leaching survey geo-mean (95% CI) % Change

Predicted field median ECe levels
0–60 3.40 (2.66, 4.36) 2.91 (2.27, 3.74) −16.8
60–120 4.40 (3.21, 6.04) 4.87 (3.85, 6.17) +9.7

Range (dS/m) 0–60 cm depth estimates 60–120 cm depth estimates

Pre-leaching Post-leaching Pre-leaching Post-leaching

Predicted field range interval estimates (with standard errors)
0–2 28.3 (4.4) 38.6 (4.1) 22.5 (5.7) 17.3 (7.0)
2–4 31.2 (3.0) 25.3 (3.0) 25.9 (3.9) 27.8 (2.5)
4–8 23.8 (2.4) 19.6 (1.8) 24.0 (2.3) 25.3 (3.9)
>8 16.7 (4.5) 16.5 (5.3) 27.6 (5.3) 29.6 (3.1)
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Fig. 4. Predicted (a) pre- and (b) post-leaching salinity maps (0–60 cm) for Field CV5.
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from 4.40 to 4.87 dS/m). Two-samplet-tests performed on the corresponding log–mean
salinity estimates indicate that these predicted changes are not statistically significant
(0–60 cm depth:t=−0.99, p= 0.003; 60–120 cm depth:t= 0.58, p= 0.581). These re-
sults suggest that the apparent average downward redistribution of salt is not statistically
meaningful.

The range interval estimates shown inTable 4better clarify the apparent salt movement.
At the 0–60 cm depth, the post-leaching proportion of area classified in the 0–2, 2–4, and
4–8 dS/m ranges are 38.6%, 25.3%, and 19.6%, respectively. The apparent change from the
corresponding pre-leaching estimates (28.3%, 31.2%, and 23.8%) suggests that the leaching
process primarily impacted the areas in the field with initial salinity levels <8 dS/m. In
contrast, the % area estimated to be >8 dS/m did not change in any meaningful manner
(i.e., 16.7% versus 16.5%). The changes in the 60–120 cm depth are much less pronounced,
although still possibly indicative of a slight salt-loading effect. Approximate Chi-square
tests performed on each set of estimates suggest that the changes in the 0–60 cm depth are
marginally significant (χ2 = 6.78,p= 0.079), while the apparent changes in the 60–120 cm
depth are non-significant (χ2 = 0.70,p= 0.873).

The preferential nature of this leaching process can be clearly seen by comparing the
pre- versus post-leaching 0–60 cm predicted salinity maps (Fig. 4a and b, respectively). The
two predicted salinity patterns look disturbingly similar, and the areas classified as >8 dS/m
appear almost identical. The only noticeable difference between these two maps appears to
be the reduction in size of the post-leaching 2–4 dS/m zone (and corresponding increase in
the 0–2 dS/m zone).

Overall, these summary statistics and prediction maps suggest that a high degree of
preferential leaching occurred in this field. Specifically, nearly all of the downward salt
movement appears to have occurred in the less saline areas (ECe < 8 dS/m), while little (if
any) movement occurred in the more saline areas. These results imply that the main goal
of the leaching process (i.e., the lowering of the salinity levels in the most saline areas) was
not achieved.

Why the leaching process failed is not apparent from the survey data. Multiple thin silt
lenses were encountered at 60–90 cm in the high saline areas during the calibration sampling;
these lenses might have restricted the vertical water flow. Or there may be an impermeable
soil layer below 1.2 m in these areas. Further investigation is necessary to resolve this
preferential leaching issue. Nonetheless, these results served to alert the landowner to the
continued salinity problem and convince him that additional leaching would not be cost
effective without performing some type of physical intervention (such as slip-plowing the
high saline zones).

4.2. Soil texture mapping (Field M22)

Table 5presents the EM38 summary statistics for the survey performed in Field M22.
Unlike the previous EM38 data collected in CV5, these vertical and horizontal readings are
much lower, with means of 84.8 and 40.1 mS/m, respectively. The EMH signal data appear
to be about 50% lower than the collocated EMV data, probably due to the low moisture
levels in the 0–30 cm soil layer. The correlation level between the EMV and EMH signal
readings is also lower (r ≈ 0.87), and the data distributions appear to be bimodal.
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Table 5
EM38 summary statistics for Field M22

EMV (mS/m) EMH (mS/m)

N 2518 2518
Mean 84.78 40.09
Standard deviation 6.12 6.68

Quantiles
Minimum 65.8 16.2
q10 74.7 29.3
q25 82.3 36.6
Median 86.4 41.8
q75 89.0 44.9
q90 91.1 47.1
Maximum 97.0 52.9

Correlation
Corr (EMV, EMH) 0.868

Fig. 5 shows the spatial map of the EMH signal data, along with the locations of the
12 calibration sample sites identified from the survey process. This map shows a clearly
distinguishable lower conductivity zone in the north-eastern section of the field, which
roughly corresponds to the NRCS mapped Mohall sandy loam soil type.

Fig. 5. Observed EMH signal pattern in Field M22, with the 12 calibration sample site locations identified.
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Table 6
Calibration soil salinity and texture summary statistics for Field M22

Soil property Depth level (cm) Mean Standard deviation Minimum Maximum

ECe (dS/m) 0–90 0.852 0.168 0.617 1.144
Clay (%) 0–90 23.00 5.92 10.62 32.34
Sand (%) 0–90 65.88 8.33 51.88 84.88
Silt (%) 0–90 11.12 2.84 4.49 15.78

Soil texture Depth level (cm) Casa Grande series Mohall series

Mean Standard deviation Mean Standard deviation

Soil texture classification by soil series
Clay (%) 0–90 24.50 4.78 16.41 5.28
Sand (%) 0–90 64.20 6.50 72.55 10.85
Silt (%) 0–90 11.30 2.24 11.03 5.67

Clay (%) Sand (%) Silt (%)

Soil texture correlation matrix (pooled across both soil series)
Clay (%) 1.000 −0.977 0.784
Sand (%) 1.000 −0.897
Silt (%) 1.000

Table 6shows the calibration soil sample summary statistics associated with this survey.
These statistics again include the mean, standard deviation, minimum and maximum levels
for the measured soil salinity (ECe; dS/m) and soil texture (% clay, % sand, % silt) data from
the 0–90 cm sampling depth. The ECe data show that Field M22 is uniformly non-saline. In
contrast, the soil texture data exhibit a fair amount of variability, particularly with respect
to the % clay and % sand measurements. The mean % clay and % sand levels also exhibit
distinct differences across soil series, with the Mohall series displaying higher % sand and
lower % clay levels. The pooled soil texture correlation matrix indicates that the % sand
and % clay sample data are inversely related (r =−0.98).

At this study site, the goal was to predict one or more of the soil texture properties from
the corresponding EM survey data. Thus, Eq.(1) was initially fit to the calibration soil
texture data with the trend surface variables defined to be the re-scaled UTM coordinate
locations of the sample sites. A preliminary analysis of this model revealed that the residual
independence assumption was reasonable. However, the estimated % silt model was found to
be non-significant (F= 2.41,p= 0.146). Additionally, neither the trend surface parameters
nor the vertical signal data were found to be statistically significant and/or improve the
predictions in the clay and sand models. Thus, a new set of simple linear regression equations
were refit to the % clay and % sand data using only the EMH signal data.

The final set of estimated M22 regression equations are shown inTable 7. TheR2 and
root mean square error estimates for the % clay and % sand models are 0.761, 3.04%, and
0.741, 4.44%, respectively. TheseR2 estimates suggest that the EMH signal data explains
about 75% of the apparent clay and sand textural variation in this field.

Table 8displays the field average summary statistics derived from these fitted regression
models. The soil texture in Field M22 is (on the average) comprised of 23.2% clay and
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Table 7
Regression model summary statistics for Field M22

% Clay model (0–90 cm) % Sand model (0–90 cm)

R2 0.761 0.741
MSE 9.23 19.74

Variable Estimate Standard error t-Score Prob >|t|
Parameter estimates (E(y) =β0 +β1EMH)

Clay (%)
β0 −3.84 4.84 −0.79 0.446
β1 0.67 0.12 5.64 <.001

Sand (%)
β0 103.16 7.08 14.57 <.001
β1 −0.93 0.18 −5.35 <.001

65.6% sand. Additionally, an estimated 80.5% of the field contains between 15% and 30%
clay, and 61.5% of the field contains between 60% and 75% sand.

The 0–90 cm depth predicted % clay map is shown inFig. 6. (The corresponding % sand
map is not shown, since it is inversely proportional to the % clay map.) The spatial pattern
in this map just reflects the original EMH signal pattern, re-calibrated via the regression
model into corresponding % clay levels. Not surprisingly, this map confirms that the low
conductivity zone in the north–east area of M22 corresponds to a lower clay (higher sand)
area (i.e., the Mohall soil series).

4.3. Tile line mapping (Field IV376)

Table 9presents the EMV signal data summary statistics for both surveys performed in
Field IV376, whileFig. 7a and b show the corresponding spatial maps. The EMV signal
readings were about 30 mS/m higher in the July 2002 survey, but the relative spatial patterns
are very similar. Both survey maps show the effect of a diagonal buried canal running

Table 8
Field average prediction statistics for Field M22

Depth (cm) Soil texture (%) Mean (95% CI)

Predicted field mean levels
0–90 Clay 23.2 (21.3, 25.2)
0–90 Sand 65.6 (62.7, 68.4)

Range (%) Clay (% of field) Range (%) Sand (% of field)

Predicted 0–90 cm field range interval estimates (with standard errors)
<15 9.4 (3.4) <60 25.1 (6.5)
15–20 16.9 (3.4) 60–65 26.0 (4.9)
20–25 32.7 (4.6) 65–70 22.0 (4.1)
25–30 30.9 (7.7) 70–75 13.5 (2.6)
>30 10.1 (2.8) >75 13.4 (5.7)
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Fig. 6. Predicted % clay map (0–90 cm) for Field M22.

across the north–east part of the field. Both maps also exhibit pronounced anisotropic
signal patterns, with the EMV signal levels periodically rising and falling in a north–south
direction across the field.

This oscillating conductivity pattern is plainly evident in the individual EMV transect
data.Fig. 8shows the acquired July 2002 EMV signal readings collected down transect #5,

Table 9
EM38 vertical signal summary statistics for Field IV376, August 2001 and July 2002 survey dates

August 2001 July 2002

EMV (mS/m) EMV (mS/m)

N 7469 5603
Mean 198.13 229.48
Standard deviation 54.64 56.81

Quantiles
Minimum 50.0 77.0
q10 125.0 151.0
q25 164.0 191.0
Median 197.0 232.0
q75 234.0 268.0
q90 269.0 302.0
Maximum 385.0 399.0
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Fig. 7. Observed: (a) July 2002 and (b) August 2001 EMV signal patterns in Field IV376.
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Fig. 8. Raw, smoothed, and filtered EMV signal data from transect #5 in Field IV376; July 2002 survey.

located about 120 m from the west edge of the field. The upper cyclic plot represents the
raw EMV signal data, while the smoother line running through these readings represents
the moving average calculated using a 60-m window. The lower cyclic plot represents the
“filtered” EMV data; i.e., the raw-smoothed differences. This latter pattern reveals at least
10 local minimums in the filtered data, with three below the UTM coordinate 3655100 N
and seven above this coordinate location. Given the reasonable assumption that this filtered
signal data reflects deviations in the soil salinity levels induced by water content variation
and long-term differential leaching, each local minimum within this pattern represents a
probable tile line location.

Fig. 9 displays a two-dimensional map of the filtered EMV signal data. The effects of
both the tile lines and (diagonal) buried canal are much more apparent in this image. The
four southern tile lines now stand out clearly, and the northern tile line effects are also more
readily visible.

In order to identify the tile line locations in the July 2002 filtered data, we first created a
two-dimensional plot of all identified local minimums. These local minimums are referred
to here as “draw-down points” (DDPs). This pattern is shown inFig. 10a. Using this starting
pattern, all DDPs that had absolute values less than 15% of the maximum identified DDP
value were temporarily removed from the plot. Additionally, all DDPs that were not asso-
ciated with at least two adjacent negative filtered EMV readings (to either side of the DDP
location) were also temporarily removed from the plot. These two pattern enhancement
operations resulted inFig. 10b, where the 10 tile lines are now clearly evident. We then
threaded the 10 line positions, identified all DDPs within 8 m of each threaded line (in-
cluding those points temporarily removed), and associated the correct tile line number with
each identified DDPs.Fig. 10c shows the final identified 10 tile lines, and corresponding
associated 210 DDPs.

The numbering system used for the 10 tile lines (as shown inFig. 10c) was chosen to
facilitate the ANOCOVA modeling analysis. Specifically, the installation records indicated
that the southern lines were twice as far apart as the northern lines, so this tile line pattern



S.M. Lesch et al. / Computers and Electronics in Agriculture 46 (2005) 351–378 373

Fig. 9. Filtered July 2002 EMV signal data, revealing locations of multiple tile lines and one diagonal buried canal
in Field IV376.

should be discernable using either of the following statistical models:

y = αj + β1[x] for j = 1, 2, · · · , 10 (11)

or,

y = β0 + β1[x] + β2[NTL] (12)

where (y) and (x) again represent appropriately re-scaled UTM coordinates, andNTL rep-
resents the assigned tile line numbers shown inFig. 10c. Eq. (11) represents a standard
ANOCOVA model which allows for (possibly) different spacing between lines, while Eq.
(12)represents the more restrictive assumption of an a priori known spacing scheme. Since
Eq. (12) is nested within Eq.(11), a generalF-test can be performed to determine which
model provides the most parsimonious fit to the data (Weisberg, 1985).

When both of the above defined models were fit to the July 2002 DDP data, the cor-
responding nested-modelF-test value was calculated to beF= 1.51 (p= 0.155). Thus, Eq.
(12) was judged to be adequate, and used to estimate the 10 tile line positions. The sum-
mary statistics and parameter estimates for this model are shown inTable 10. The model
produced anR2 value of 0.9999, a mean square error (MSE) estimate of 3.86 m, and a
calculated split-line spacing of 53.23 m. Thisβ2 parameter estimate closely agrees with the
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recorded split-line spacing of 53.34 m, and the general model summary statistics suggest
that the 10 tile line positions have been accurately defined.

To test the repeatability of this tile line mapping methodology, we performed an identical
type of analysis on the IV376 August 2001 EMV survey data. As before, we smoothed and
filtered the EMV data, visually located and threaded the same 10 tile lines, and in this
analysis identified 285 distinct DDPs (associated with the 10 lines). Eqs.(11) and (12)
were then re-estimated using this new data, and a nested-modelF-test statistic (F= 1.73,

Fig. 10. (a) The complete set of draw down points (DDPs) identified from the July 2002 EMV signal data in Field
IV376; (b) a reduced set of DDPs that more clearly show the 10 tile line positions; and (c) the final set of DDPs
associated with each of the 10 identified tile lines in Field IV376.
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Fig. 10. (Continued).

p= 0.092) was calculated. This test result again suggested that Eq.(12) was appropriate.
The corresponding model summary statistics and parameter estimates corresponding to
the August 2001 survey data are also shown inTable 10, respectively. This second model
produced anR2 value of 0.9998, a MSE estimate of 6.72 m, and a calculated split-line
spacing of 53.31 m.

Finally, the DDP data from both surveys were pooled together in order to test the equiv-
alence of the two sets of parameter estimates. The calculatedF-test value corresponding to
the hypothesis of equivalent parameter estimates wasF= 4.98 (p= 0.002). This result sug-
gests that these two sets of parameter estimates arestatisticallydifferent (specifically, theβ0
andβ1 estimates appear to be different across the two surveys). However, this test does not
quantify the magnitude of deviation between the mapped tile line locations across the two

Table 10
Tile line regression model summary statistics for Field IV376, August 2001 and July 2002 survey dates

July 2002 model (N= 210 DDPs) August 2001 model (N= 285 DDPs)

R2 0.9999 0.9998
MSE 3.86 6.72

Parameter estimates (with standard errors)a

β0 135.41 (0.40) 136.57 (0.46)
β1 0.0140 (0.0006) 0.0114 (0.0007)
β2 53.23 (0.037) 53.31 (0.041)

95% confidence interval for apparent tile line spacing (m)
(53.16, 53.31) (53.23, 53.39)

a The equation form is (y=mx+b), and the prediction, model is defined as a function of bothX and the
tile line number (NTL); i.e., Y−Ys =β0 +β1[X−Xs] +β2[NTL], where theX/Y shift factors are (Xs = 636,700,
Ys = 3,654,700) and theNTL values are shown in Fig 10c.
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survey dates. In order to accurately quantify this, they-positions of each line along both the
eastern and western edges of the field were estimated using the time specific Eq.(12)models
(using UTMx-coordinates approximately 50 m in from the eastern and western field bound-
aries). The absolute difference between the predicted 20y-coordinates were then calculated
for the two survey dates, and subsequently analyzed. The average absolute difference was
found to be 0.94 m, and the minimum and maximum observed absolute differences (out of
all 20 values) were 0.03 and 1.85 m, respectively. Thus, the average absolute difference in
the predicted set of tile line locations as derived from these two EM surveys was found to
be <1 m. This estimate coincides with the stated accuracy of the Trimble differential GPS
system used during the data collection process.

5. Conclusion

Spatial salinity mapping using EM survey data has been well documented in the soil
literature. However, this technology has steadily evolved from a basic mapping procedure
into a more comprehensive tool for supplying detailed feedback on various agricultural
management practices. In the CV5 leaching example, this feedback represents the change
(or lack there of) in the spatial salinity pattern attributable to the leaching event. More
specifically, these survey data show that the leaching event has basically failed; the highest
saline areas mapped in CV5 show virtually no change between the pre- versus post-leaching
time frames.

The soil texture mapping in Field M22 represents a more traditional soil property map-
ping example. In this particular study, the spatial soil texture information was needed as
input to a spatially referenced cotton production model. However, this information can be
used for many diverse purposes, such as better defining the NRCS soil mapping boundary
zone between the Mohall sandy loam and Casa Grande clay loam soil series.

More importantly, the same general statistical methodology was used to produce both
the CV5 salinity maps and M22 texture map. This latter point deserves emphasis; the
regression-based statistical modeling and prediction approach discussed here is very gen-
eral. Provided the EM survey data is well correlated with the soil property of interest,
accurate quantification and prediction of that soil property is usually possible using this
approach.

The tile line mapping example in Field IV376 represents a more recent application of
EM surveying technology. In many fields, permanently installed tile lines result in long-
term preferential leaching patterns that are directly reflected in the EM signal data response
pattern. When such cyclic patterns are detected, the data can be used to accurately map
the positions of the detected lines. As shown in this example, the average error in the
repeatability of the tile line mapping process (<1 m) was equivalent to the manufacturer
stated position uncertainty in the GPS location data. This surveying technique can be very
useful when the exact locations of the individual lines are not known (as is often the case
with older drainage systems). Tile lines requiring maintenance or cleaning may also be
detected during these surveys, since damaged or clogged lines often cause abrupt changes
in the preferential leaching pattern.
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In summary, the preceding case studies demonstrate some of the current applications for
agricultural EM survey work in the arid southwestern United States. Although each appli-
cation is different, the underlying technology is the same. These projects demonstrate that
diverse types of spatial information can be derived from ECa survey data, and that this infor-
mation can be readily used to help improve the overall management of agricultural fields.

Acknowledgments

D.A. Robinson was in part funded by a USDA NRI grant (2002-35107-12507) while
undertaking this research. The authors also wish to acknowledge and thank Donald Ackley
(Coachella Valley Water District) and Steve Burch (Imperial Irrigation District) for assisting
in the collection of the EM survey data in fields CV5 and IV376, respectively.

References

Carter, L.M., Rhoades, J.D., Chesson, J.H., 1993. Mechanization of soil salinity assessment for mapping. In: ASAE
Winter Meetings, 12–17 December. Chicago, IL. ASAE, St. Joseph, MI, USA (ASAE Paper No. 931557).

Cook, R.D., Weisberg, S., 1999. Applied Regression Including Computing and Graphics. John Wiley, NY, USA.
Corwin, D.L., Lesch, S.M., 2003. Application of soil electrical conductivity to precision agriculture: theory,

principles, and guidelines. Agron. J. 95, 455–471.
Doolittle, J.A., Sudduth, K.A., Kitchen, N.R., Indorante, S.J., 1994. Estimating depths to claypans using electro-

magnetic induction methods. J. Soil Water Conserv. 49, 572–575.
Graybill, F.A., 1976. Theory and Application of the Linear Model. Wadsworth Publishing Co., Inc., Belmont, CA,

USA.
Hendrickx, J.M.H., Baerends, B., Raza, Z.I., Sadig, M., Chaudhry, M.A., 1992. Soil salinity assessment by elec-

tromagnetic induction of irrigated land. Soil Sci. Soc. Am. J. 56, 1933–1941.
Jaynes, D.B., Colvin, T.S., Ambuel, J., 1993. Soil type and crop yield determinations from ground conductivity

surveys. ASAE Paper No. 933552. ASAE, St. Joseph, MI, USA.
Johnson, C.K., Mortensen, D.A., Wienhold, B.J., Shanahan, J.F., Doran, J.W., 2003. Site-specific management

zones based upon soil electrical conductivity in a semiarid cropping system. Agron. J. 95, 303–315.
Kachanoski, R.G., Gregorich, E.G., Van-Wesenbeeck, I.J., 1988. Estimating spatial variations of soil water content

using noncontacting electromagnetic inductive methods. Can. J. Soil Sci. 68, 715–722.
Kitchen, N.R., Sudduth, K.A., Drummond, S.T., 1999. Soil electrical conductivity as a crop productivity measure

for claypan soils. J. Prod. Agric. 12, 607–617.
Kitchen, N.R., Sudduth, K.A., Drummond, S.T., 1996. Mapping of sand deposition from 1993 Midwest floods

with electromagnetic induction measurements. J. Soil Water Conserv. 51, 336–340.
Lesch, S.M., 2005. Sensor-directed response surface sampling designs for characterizing spatial variation in soil

properties. Comput. Electron. Agric. 46, 153–179.
Lesch, S.M., Corwin, D.L., 2003. Predicting EM/soil property correlation estimates via the Dual Pathway Parallel

Conductance model. Agron. J. 95, 365–379.
Lesch, S.M., Rhoades, J.D., Corwin, D.L., 2000. ESAP-95 Version 2.10R: User Manual and Tutorial Guide.

Research Rpt. 146. USDA-ARS George E. Brown Jr. Salinity Laboratory, Riverside, CA, USA.
Lesch, S.M., Strauss, D.J., Rhoades, J.D., 1995a. Spatial prediction of soil salinity using electromagnetic induction

techniques. Part 1. Statistical prediction models: a comparison of multiple linear regression and cokriging.
Water Resour. Res. 31, 373–386.

Lesch, S.M., Strauss, D.J., Rhoades, J.D., 1995b. Spatial prediction of soil salinity using electromagnetic induc-
tion techniques. Part 2. An efficient spatial sampling algorithm suitable for multiple linear regression model
identification and estimation. Water Resour. Res. 31, 387–398.



378 S.M. Lesch et al. / Computers and Electronics in Agriculture 46 (2005) 351–378

Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D., 1996. SAS system for Mixed Models. SAS Institute
Inc., Cary, NC, USA.

McNeill, J.D., 1980. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers, Tech. Note
TN-6. Geonics Limited, Ont., Canada.

Myers, R.H., 1986. Classical and Modern Regression with Applications. Duxbury Press, Boston, MA, USA.
Plant, R.E., 2001. Site-specific management: the application of information technology to crop production. Com-

put. Electron. Agric. 30, 9–29.
Press, S.J., 1989. Bayesian Statistics: Principles, Models, and Applications. John Wiley, NY, USA.
Rhoades, J.D., 1992. Instrumental field methods of salinity appraisal. In: Topp, G.C., Reynolds, W.D., Green,

R.E. (Eds.), Advances in Measurement of Soil Physical Properties: Bring Theory into Practice. SSSA Special
Publication No. 30. Soil Science Society of America, Madison, WI, USA, pp. 231–248.

Rhoades, J.D., 1996. Salinity: Electrical conductivity and total dissolved salts. In: Sparks, D.L. (Ed.), Methods
of Soil Analysis. Part 3—Chemical Methods. Soil Science Society of America Book Series 5. Soil Science
Society of America, Madison, WI, USA, pp. 417–435.

Rhoades, J.D., Manteghi, N.A., Shouse, P.J., Alves, W.J., 1989. Soil electrical conductivity and soil salinity: new
formulations and calibrations. Soil Sci. Soc. Am. J. 53, 433–439.

Rhoades, J.D., Chanduvi, F., Lesch, S.M., 1999. Soil salinity assessment: methods and interpretation of electrical
conductivity measurements. FAO Irrigation and Drainage Paper #57. Food and Agriculture Organization of
the United Nations, Rome, Italy, 1–150.

Rhoades, J.D., Lesch, S.M., LeMert, R.D., Alves, W.J., 1997. Assessing irrigation/drainage/salinity management
using spatially referenced salinity measurements. Agric. Water Manag. 35, 147–165.

Royle, J.A., Berliner, M., 1999. A hierarchical approach to multivariate spatial modeling and prediction. J. Agric.
Biol. Environ. Stat. 4, 29–56.

SAS Institute Inc., 1999. SAS/STAT User’s Guide, Version 8. SAS Institute Inc., Cary, NC, USA.
Sheets, K.R., Hendrickx, J.M.H., 1995. Non-invasive soil water content measurement using electromagnetic

induction. Water Resour. Res. 31, 2401–2409.
Sudduth, K.A., Kitchen, N.R., Hughes, D.F., Drummond, S.T., 1995. Electromagnetic induction sensing as an

indicator or productivity on claypan soils. In: Robert, P.C., Rust, R.H., Larson, W.E. (Eds.), Proceedings of the
Second International Conference on Site-Specific Management for Agricultural Systems. ASA-CSSA-SSSA,
Madison, WI, USA, pp. 671–681.

Thompson, S.K., 1992. Sampling. John Wiley, NY, USA.
Triantafilis, J., Huckel, A.I., McBratney, A.B., 1998. Estimating deep drainage on the field scale using a mobile

EM sensing system and Sodium-SaLF. In: Proceedings of the Ninth Australian Cotton Growers Research
Association Conference, August 12–14, 1998, Broadbeach, Queensland, Australia, pp. 61–64.

United States Department of Agriculture, 1984. Soil survey of Pinal County, Arizona: western part. Soil Conser-
vation Service, Washington, DC, USA.

United States Department of Agriculture, 1980. Soil survey of Riverside County California: Coachella Valley
Area. Soil Conservation Service, Washington, DC, USA.

Weisberg, S., 1985. Applied Linear Regression, second ed. John Wiley, NY, USA.
Williams, B.G., Baker, G.C., 1982. An electromagnetic induction technique for reconnaissance surveys of soil

salinity hazards. Aust. J. Soil Res. 20, 107–118.
Williams, B.G., Hoey, D., 1987. The use of electromagnetic induction to detect the spatial variability of the salt

and clay contents of soils. Aust. J. Soil Res. 25, 21–27.


	Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils
	Introduction
	Theory
	EM38 principals of operation
	The prediction of soil properties from EM survey data
	Individual point (survey site) predictions
	Field average prediction estimates

	Tile line mapping

	Materials and methods
	Case study 1 (CV5): pre- versus post-leaching salinity mapping
	Case study 2 (M22): soil texture (% clay) mapping
	Case study 3 (IV376): tile line mapping

	Results and discussion
	Pre- versus post-leaching salinity study (Field CV5)
	Soil texture mapping (Field M22)
	Tile line mapping (Field IV376)

	Conclusion
	Acknowledgments
	References


