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Abstract

Spatial characterization of the variability of soil physico-chemical properties is a fundamental
element of (i) soil quality assessment, (ii) modeling non-point source pollutants in soil, and (iii) site-
specific crop management. Apparent soil electrical conductivity (ECa) is a quick, reliable measurement
that is frequently used for the spatio-temporal characterization of edaphic (e.g., salinity, water content,
texture, and bulk density) and anthropogenic (e.g., leaching fraction) properties. It is the objective
of this paper to provide the protocols for conducting a field-scale ECa survey (Part I) and apply
these protocols to a soil quality assessment in central California’s San Joaquin Valley (Part II). The
protocols are comprised of eight general steps: (i) site description and ECa survey design; (ii) ECa
data collection with mobile GPS-based equipment; (iii) soil sampling design; (iv) soil core sampling;
(v) laboratory analysis; (vi) calibration of ECa to ECe; (vii) spatial statistical analysis; (viii) GIS
database development and graphic display. For each outlined step, detailed discussion and guidelines
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were presented. The developed protocols provide the guidelines to assure reliability, consistency, and
compatibility of ECa survey measurements and their interpretation.
Published by Elsevier B.V.
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1. Introduction

The heterogeneity of soil physico-chemical properties has been known since the classic
study of Nielsen et al. (1973), which characterized the spatial variability of soil-water
properties for a 150 ha field at the University of California’s West Side Field Station in the
San Joaquin Valley. The characterization of soil spatial variability is fundamental to the
understanding of landscape-scale processes of soils. Delineation of the spatial variation of
soil properties is a crucial element of (i) non-point source (NPS) pollutant transport in the
vadose zone, (ii) soil quality assessment, and (iii) site-specific crop management.

The spatial measurement of apparent soil electrical conductivity (ECa) is one means
of delineating spatial variation. Because of reliability, ease of measurement, and ability to
detect a variety of soil properties, spatial ECa measurements have become a common tool
used for field and landscape-scale studies related to edaphic properties. Spatial surveys of
ECa have become widely used by a variety of scientists to spatially characterize soil salinity
and nutrients (e.g., NO3−), texture-related properties, bulk density related properties such
as compaction, organic matter (OM) related properties, and a variety of other soil properties
(seeTable 1; Corwin and Lesch, 2005a).

Geo-referenced ECa measurements have been correlated to associate yield-monitoring
data with mixed results (Jaynes et al., 1993; Sudduth et al., 1995; Kitchen et al., 1999;
Johnson et al., 2001; Corwin et al., 2003b). These mixed results are due to confounding
factors that complicate the relationship between ECa measurements and variations in crop
yield. As pointed out byCorwin and Lesch (2003), crop yield inconsistently correlates with
ECa due to (i) the influence of soil properties (e.g., salinity, water content, texture, etc.) that
are measured by ECa, but may or may not influence yield within a particular field, (ii) a
temporal component of yield variability that is poorly captured by a state variable such as
ECa, and (iii) confounding climatic factors.

Nevertheless, in instances where yield correlates with ECa, maps of ECa are useful for
devising soil sampling schemes to identify soil properties influencing yield within a field
(Corwin et al., 2003b). When used as a means of directing soil sampling design, geo-
referenced measurements of ECa have been shown by investigators to be a reliable, rapid
means of establishing the spatial variability of soil physico-chemical properties associated
with the leaching of NPS pollutants (Corwin et al., 1999), soil quality (Johnson et al., 2001;
Corwin et al., 2003a), and variations in crop yield (Corwin et al., 2003b).

Because previous studies have varied in their approach of obtaining and interpreting
spatial ECa measurements, a recent USDA-ARS workshop on precision agriculture (Kansas
City, MO, 25–27 March 2003) concluded that protocols for conducting geo-referenced
field-scale ECa surveys and guidelines for interpreting the ECa measurements are needed
to assure reliability, consistency, and compatibility of data. It is the objective of this paper
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Table 1
Compilation of literature measuring ECa with geophysical techniques (ER or EM) that have been categorized
according to soil-related properties that were either directly or indirectly measured by ECa

Soil property References

Directly measured soil properties
Salinity (and nutrients, e.g. NO3−) Halvorson and Rhoades (1976); Rhoades et al. (1976); Rhoades

and Halvorson (1977); de Jong et al. (1979); Cameron et al.
(1981); Rhoades and Corwin (1981, 1990); Corwin and Rhoades
(1982, 1984); Williams and Baker (1982); Greenhouse and Slaine
(1983); van der Lelij (1983); Wollenhaupt et al. (1986); Williams
and Hoey (1987); Corwin and Rhoades (1990); Rhoades et
al. (1989, 1990, 1999a, 1999b); Slavich and Petterson (1990);
Diaz and Herrero (1992); Hendrickx et al. (1992); Lesch et al.
(1992, 1995a, 1995b,1998); Rhoades (1992, 1993); Cannon et
al. (1994); Nettleton et al. (1994); Bennett and George (1995);
Drommerhausen et al. (1995); Ranjan et al. (1995); Hanson
and Kaita (1997); Johnston et al. (1997); Mankin et al. (1997);
Eigenberg et al. (1998, 2002); Eigenberg and Nienaber (1998,
1999, 2001); Mankin and Karthikeyan (2002); Herrero et al.
(2003); Paine (2003); Kaffka et al. (2005)

Water content Fitterman and Stewart (1986); Kean et al. (1987); Kachanoski et al.
(1988); Kachanoski (1990); Vaughan et al. (1995); Sheets and
Hendrickx (1995); Hanson and Kaita (1997); Khakural et al.
(1998); Morgan et al. (2000); Freeland et al. (2001); Brevik and
Fenton (2002); Wilson et al. (2002); Kaffka et al. (2005)

Texture-related (e.g., sand, clay, depth
to claypans or sand layers)

Williams and Hoey (1987); Brus et al. (1992); Jaynes et al. (1993);
Stroh et al. (1993); Sudduth and Kitchen (1993); Doolittle et al.
(1994, 2002); Kitchen et al. (1996); Banton et al. (1997); Boettinger
et al. (1997); Rhoades et al. (1999b); Scanlon et al. (1999); Inman
et al. (2001); Triantafilis et al. (2001); Anderson-Cook et al. (2002);
Brevik and Fenton (2002)

Bulk density related (e.g., compaction) Rhoades et al. (1999b); Gorucu et al. (2001)

Indirectly measured soil properties
Organic matter related (including soil

organic carbon, and organic chemical
plumes)

Greenhouse and Slaine (1983, 1986); Brune and Doolittle (1990);
Nyquist and Blair (1991); Jaynes (1996); Benson et al. (1997);
Bowling et al. (1997); Brune et al. (1999); Nobes et al. (2000)

Cation exchange capacity McBride et al., 1990; Triantafilis et al. (2002)
Leaching Slavich and Yang (1990); Corwin et al. (1999); Rhoades et al.

(1999b)
Groundwater recharge Cook and Kilty (1992), Cook et al. (1992); Salama et al. (1994)
Herbicide partition coefficients Jaynes et al. (1995)
Soil map unit boundaries Fenton and Lauterbach (1999); Stroh et al. (2001)
Corn rootworm distributions Ellsbury et al. (1999)
Soil drainage classes Kravchenko et al. (2002)

Taken fromCorwin and Lesch (2005a).

to (i) describe the GPS-based equipment used to conduct an ECa survey and (ii) outline a
detailed set of protocols for conducting a field-scale ECa survey that is used to direct a soil
sampling design to characterize soil spatial variability for use in soil quality assessment and
site-specific crop management.
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2. Mobilized ECa-measurement equipment

A detailed description of the theory, operation, and construction of electrical resistiv-
ity (ER) and electromagnetic induction (EM) instrumentation is provided byRhoades et
al. (1999b)andHendrickx et al. (2002a). Mobilized ECa-measurement equipment, ER or
EM instrumentation, has been in use for over a decade for the purpose of mapping and
monitoring field-scale spatial soil salinity patterns (Rhoades, 1992, 1993). More recently
these mobilized systems have been used to spatially characterize soil condition by map-
ping a variety of physico-chemical properties including salinity, water content, texture, bulk
density (Johnson et al., 2001; Corwin et al., 2003a). The design of a mobilized ECa mea-
surement system consists of four basic components: (i) ECa measurement sensor, (ii) global
positioning system (GPS), (iii) hardware interfacing, and (iv) transport platform.

Three types of ECa measurement sensors are available: (i) invasive four-electrode ER
sensors, (ii) noninvasive EM sensors, and (iii) time domain reflectometry (TDR) sensors.
Invasive ER and noninvasive EM sensors are the most popular sensors because the com-
mercial development of a TDR sensor for use on a mobile apparatus has not yet occurred.
Invasive four-electrode sensors can take the form of either insertion probes or surface arrays
with the latter being the configuration used for mobilized ECa measurement systems. Ex-
amples of invasive ER four-electrode sensors configured as fixed-surface arrays include the
equipment developed byRhoades (1992, 1993)andCarter et al. (1993)and the commercial
sensor technology used in the Veris 3100 system1 (Veris Technologies, Salina, KS). Com-
mercial examples of EM sensors include the Geonics EM-31 and EM-38 soil conductivity
meters (see footnote 1) (Geonics Ltd., Mississauga, Ont., Canada), both of which can be
easily mobilized, but the EM-38 has been the primary instrument of choice for soil qual-
ity and site-specific crop management applications because its depth of penetration most
closely corresponds to the root zone (i.e., 0 to 1–1.5 m).

There are two basic GPS systems that can be used in mobile ECa-measurement equip-
ment: (i) self-contained systems and (ii) stand-alone GPS receivers that require external data
logging. The difference between the two is not in the GPS receiver technology, but in the
interfacing. Self-contained GPS systems include data loggers and software programs that
allow the user to record, modify, and/or store GPS coordinate data independent of attached
sensors or hardware interfacing. Stand-alone GPS receivers typically must be connected to
a microprocessor or electronic controller in order to store and/or process GPS coordinate
data. The Trimble Pathfinder Pro-XRS and Trimble Ag132 GPS systems are examples of
available commercial GPS systems.

Hardware interfacing is needed to link the ECa measurement sensor data with associated
GPS coordinate data and control the timing of the data acquisition. The complexity of the
hardware interface depends on the type and number of sensors and the extent of real-time data
processing; consequently, the hardware interface tends to be system specific and expensive.
However, in a simple mobile ECa measurement system with a single electrical conductivity
meter (i.e., single EM-38) the hardware interface can be omitted by direct output of real-

1 Mention of trademark or proprietary products does not constitute an endorsement or guarantee/warranty of the
product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products
that may also be available.
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time sensor data through an RS-232 serial connection with the data capture capability of the
GPS system. The Veris system comes complete with interfacing and recording hardware,
only requiring the user to plug in a compatible GPS receiver.

The final component of the mobile ECa measurement system is the transport platform,
which consists of either tow-able or self-mobilized platforms. Pickups, all-terrain vehicles
(ATVs), and tractors have been used to tow ECa-measurement sensors. The fixed-array
four electrode (Rhoades, 1992, 1993) and Veris 3100 (Lund et al., 1999; Sudduth et al.,
1999) are examples of ER sensor platforms that are towed. Simple non-metallic platforms
have also been developed to tow EM instrumentation (Jaynes et al., 1993; Cannon et al.,
1994; Kitchen et al., 1996; Freeland et al., 2002). An example of a self-mobilized platform
includes a modified hydraulic-driven spray tractor with insertion-type, four-electrode ECa
sensors located on the rig’s undercarriage that are driven into the ground with the hydraulic
system, and a non-metallic cylinder located at the front end that houses an EM-38, which is
raised, lowered, and rotated 90E with the hydraulic system (Rhoades, 1992, 1993; Carter et
al., 1993). In general, motorized platforms are more sophisticated, versatile, and expensive
to develop than tow-able platforms.

System integration can be dedicated or autonomous. In a dedicated system all ECa
measurement sensors and GPS equipments are integrated directly into the transport platform.
This system relies on extensive hardware interfacing and a central computer or controller
to manage the data acquisition and data storage. In an autonomous system the GPS receiver
and each ECa measurement sensor can be easily removed from the platform and used
independently. The Trimble Pathfinder Pro-XRS is an example of an autonomous system,
whereas the Trimble Ag132 GPS is a dedicated system.

Surveys of ECa to characterize soil spatial variability are used as spatial information
to direct a soil sampling scheme that will provide the necessary ground-truth information
to establish the spatial distribution of those soil properties correlated with ECa within a
field. For this reason, the inclusion of soil sampling equipment directly onto the platform
is advantageous. The addition of soil sampling equipment allows the platform to serve as
both an ECa survey system and a soil sampling rig, which increases the versatility of the
system.Figs. 1 and 2illustrate the components of a GPS-based mobile ECa measurement
system developed at the George E. Brown Jr. Salinity Laboratory. The system consists of
a dual-dipole EM-38 that simultaneously measures vertical (EMv) and horizontal (EMh)
electromagnetic induction ECa (seeFig. 1b), a Giddings soil core sampler (see footnote 1)
mounted on the front of the rig (seeFig. 1c), and a Trimble Pro-XL GPS system (seeFig. 2).
The Trimble Pro-XL GPS system consists of a MC-V datalogger, TANS receiver, battery
pack, and dome antenna (seeFig. 2).

3. Protocols for conducting a field-scale ECa survey and soil sampling

Geo-referenced measurements of ECa are useful for establishing the spatial distribution
of those soil properties influencing ECa within a field. In instances where ECa correlates
with a particular soil property, an ECa-directed soil sampling approach will establish the
spatial distribution of that property with an optimum number of site locations to characterize
the variability and keep labor costs minimal (Corwin et al., 2003a). Also, if ECa is correlated
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Fig. 1. Mobile EM equipment: (a) complete rig; (b) close-up of sled holding the Geonics dual-dipole EM-38 soil
electrical conductivity meter; (c) close-up of Giddings soil core sampler.

Fig. 2. Connection between (a) dual-dipole EM-38 meter and Trimble MC-V Pro-XL system consisting of (b)
MC-V datalogger, (c) TANS receiver, (d) battery pack, and (e) dome antenna.
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with crop yield, then an ECa-directed soil sampling approach can be used to identify those
soil properties that are causing variability in crop yield (Corwin et al., 2003b). General ECa
survey guidelines can be derived fromCorwin and Lesch (2003)andCorwin et al. (2003a,
2003b). Details for conducting a field-scale ECa survey for the purpose of characterizing
the spatial variability of soil properties influencing soil quality or crop yield variation are
provided herein.

The purpose of an ECa survey from a soil quality perspective is to establish the within-
field variation of soil properties that influence the field’s intended use (e.g., agricultural
productivity, environmental protection, waste recycling, etc.). The purpose of an ECa survey
from a site-specific crop management perspective is to establish the within-field variation of
soil properties influencing the variation in crop yield. The basic elements of a field-scale ECa
survey applied to soil quality assessment and site-specific crop management include (i) site
description and ECa survey design, (ii) geo-referenced ECa data collection, (iii) soil sample
design based on geo-referenced ECa data, (iv) soil sample collection, (v) physico-chemical
analysis of pertinent soil properties, (vi) if soil salinity is a primary concern, development
of a stochastic and/or deterministic calibration of ECa to soil salinity as determined by the
electrical conductivity of the saturation extract (ECe), (vii) spatial statistical analysis, and
(viii) geographic information system (GIS) database development. The basic steps within
each component are outlined inTable 2.

3.1. ECa survey design and geo-referenced ECa data collection

An initial ECa survey with either mobile ER or EM equipment is conducted and used to
establish soil core sampling locations needed for calibration and/or characterization of the
spatial distribution of soil properties correlated with ECa. Depending on the level of detail
desired, from 100 to several thousand spatial measurements of ECa are taken, generally in
regularly spaced traverses across the field of interest. The use of mobile EM equipment has
three advantages over the use of mobile ER equipment: (i) the ability to take measurements
on dry and stony soils, (ii) the ability to traverse growing crops, and (iii) the ability to traverse
fields with beds and furrows. Under dry soil conditions the physical contact needed between
ER electrodes and soil for continuous electrical current flow is difficult to maintain. Stony
soils are damaging to the ER electrodes. Growing crops and bed–furrow systems pose
a problem for ER equipment because of contact problems with the invasive electrodes.
The coulters or insertion probes of ER equipment are on a fixed-height or limited-height
adjustable platform that cannot clear most crops nor are they easily adjusted to conform
to abrupt changes in microtopography as found in bed–furrow systems. In contrast, EM
equipment is easily designed so the platform clears most crop canopies and the EM-38
slides down furrows.

Prior to physically conducting the ECa survey, the survey’s objective(s) must be defined
based upon the project goals and available resources (e.g., manpower, funding, analytical
capabilities, etc.). Pre-survey design tasks including site boundary definition, recording of
site metadata, and selection of the GPS coordinate system and datum should be performed.
The survey’s objectives and resources will determine the measurement intensity of the
survey (i.e., spacing between ECa measurements). Measurement intensities generally vary
from every 3 to 5 m for intense surveys used in detailed field-scale studies to 75–100 m
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Table 2
Outline of steps for an ECa field survey

1. Site description and ECa survey design
(a) Record site metadata
(b) Define the project’s/survey’s objective
(c) Establish site boundaries
(d) Select GPS coordinate system
(e) Establish ECa measurement intensity

2. ECa data collection with mobile GPS-based equipment
(a) Geo-reference site boundaries and significant physical geographic features with GPS
(b) Measure geo-referenced ECa data at the pre-determined spatial intensity and record associated metadata

3. Soil sample design based on geo-referenced ECa data
(a) Statistically analyze ECa data using an appropriate statistical sampling design to establish the soil sample
site locations
(b) Establish site locations, depth of sampling, sample depth increments, and number of cores per site

4. Soil core sampling at specified sites designated by the sample design
(a) Obtain measurements of soil temperature through the profile at selected sites
(b) At randomly selected locations obtain duplicate soil cores within a 1 m distance of one another to establish
local-scale variation of soil properties
(c) Record soil core observations (e.g., mottling, horizonation, textural discontinuities, etc.)

5. Laboratory analysis of appropriate soil physico-chemical properties defined by project objectives

6. If needed, stochastic and/or deterministic calibration of ECa to ECe or to other soil properties (e.g., water
content and texture)

7. Spatial statistical analysis to determine the soil properties influencing ECa and/or crop yield
(a) Soil quality assessment

(1) Perform a basic statistical analysis of physico-chemical data by depth increment and by composite
depth over the depth of measurement of ECa

(2) Determine the correlation between ECa and physico-chemical soil properties by composite depth over
the depth of measurement of ECa

(b) Site-specific crop management (if ECa correlates with crop yield, then)
(1) Perform a basic statistical analysis of physico-chemical data by depth increment and by composite

depths
(2) Determine the correlation between ECa and physico-chemical soil properties by depth increment and

by composite depths
(3) Determine the correlation between crop yield and physico-chemical soil properties by depth and by

composite depths to determine depth of concern (i.e., depth with consistently highest correlation, whether
positive or negative, of soil properties to yield) and the significant soil properties influencing crop yield (or
crop quality)

(4) Conduct an exploratory graphical analysis to determine the relationship between the significant physico-
chemical properties and crop yield (or crop quality)

(5) Formulate a spatial linear regression (SLR) model that relates soil properties (independent variables)
to crop yield or crop quality (dependent variable)

(6) Adjust this model for spatial auto-correlation, if necessary, using restricted maximum likelihood or
some other technique

(7) Conduct a sensitivity analysis to establish dominant soil property influencing yield or quality
(8) GIS database development and graphic display of spatial distribution of soil properties
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for basin-scale studies of thousands of hectares. Typically, an 18 ha field can be surveyed
with mobile ECa equipment in one to two 8 h work days at a 5 m spacing, which results in
roughly 7200 ECa measurements. This level of survey intensity provides a map of spatial
variation sufficiently detailed to meet nearly any intended purpose.

3.2. Soil sample design based on geo-referenced ECa data

Once a geo-referenced ECa survey is conducted, the data are used to establish the lo-
cations of the soil core sample sites for (i) calibration of ECa to soil sample ECe and/or
(ii) delineation of the spatial distribution of soil properties correlated to ECa within the
field surveyed. To establish the locations where soil cores are to be taken either design-
based or model-based sampling schemes can be used. Design-based sampling schemes
have historically been the most commonly used and hence are more familiar to most re-
search scientists. An excellent review of design-based methods can be found inThompson
(1992). Design-based methods include simple random sampling, stratified random sam-
pling, multistage sampling, cluster sampling, and network sampling schemes. The use of
unsupervised classification byFraisse et al. (2001)andJohnson et al. (2001)is an example
of design-based sampling. Model-based sampling schemes are far less common, although
some statistical research has been performed in this area (Royall, 1988). Specific model-
based sampling approaches that have direct application to agricultural and environmental
survey work are described byMcBratney and Webster (1983), Russo (1984)andLesch et al.
(1995b).

The sampling approach introduced byLesch et al. (1995b)is specifically designed for
use with ground-based soil ECa data. This sampling approach attempts to optimize the
estimation of a regression model (i.e., minimize the mean square prediction error produced
by the calibration function), while simultaneously insuring that the independent regres-
sion model residual error assumption remains approximately valid. This in turn allows an
ordinary regression model to be used to predict soil property levels at all remaining (i.e.,
non-sampled) conductivity survey sites. The basis for this sampling approach stems directly
from traditional response-surface sampling methodology (Box and Draper, 1987).

There are two main advantages to the response-surface approach. First, a substantial
reduction in the number of samples required for effectively estimating a calibration function
can be achieved, in comparison to more traditional design-based sampling schemes. Second,
this approach lends itself naturally to the analysis of remotely sensed ECadata. Indeed, many
types of ground, airborne, and/or satellite-based remotely sensed data are often collected
specifically because one expects this data to correlate strongly with some parameter of
interest (e.g., crop stress, soil type, soil salinity, etc.), but the exact parameter estimates
(associated with the calibration model) may still need to be determined via some type of
site-specific sampling design. The response-surface approach explicitly optimizes this site
selection process.

A user-friendly software package (ESAP) developed byLesch et al. (2000), which uses
a response-surface sampling design, has proven to be particularly effective in delineating
spatial distributions of soil properties from ECa survey data (Corwin and Lesch, 2003;
Corwin et al., 2003a, 2003b). The ESAP software package identifies the optimal locations
for soil sample sites from the ECa survey data. These sites are selected based on spatial
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statistics to reflect the observed spatial variability in ECa survey measurements. Generally,
6–20 sites are selected depending on the level of variability of the ECa measurements for a
site. The optimal locations of a minimal subset of ECa survey sites are identified to obtain
soil samples.

Once the number and location of the sample sites have been established, the depth of
soil core sampling, sample depth increments, and number of sites where duplicate or repli-
cate core samples should be taken are established. The depth of sampling should be the
same at each sample site and should extend over the depth of penetration by the ECa-
measurement equipment used. For instance, the Geonics EM-38 measures to a depth of
roughly 0.75–1.0 m in the horizontal coil configuration (EMh) and 1.2–1.5 m in the verti-
cal coil configuration (EMv). Sample depth increments are flexible and depend to a great
extent on the study objectives. A depth increment of 0.3 m has been commonly used at
the USDA-ARS Salinity Laboratory because it provides sufficient soil profile information
over the root zone (i.e., 0–1.2 to 1.5 m) for statistical analysis without an overly burden-
some number of samples to conduct physico-chemical analyses. Depth increments should
be the same from one sample site to the next. The number of duplicates or replicates
taken at each sample site are determined by the desired accuracy for characterizing soil
properties and the need for establishing the level of local-scale variability at the site. Du-
plicates or replicates are not necessarily needed at every sample site to establish local-scale
variability.

3.3. Soil core sampling

General soil core sampling protocols (Peterson and Calvin, 1996) and associated quality
control and quality assurance procedures (Klestra and Bartz, 1996) should be followed. Soil
cores are acquired to the same depth and over the same depth increments at all the selected
sites. Soil cores are taken directly over the location of the ECa measurement. As the cores
are taken, soil temperature through the profile can be measured at selected sites, if needed.
During sampling, attention should be taken to avoid including any dry, loose soil that may
be present at the surface. Dry, loose topsoil is not reflected in the ECa measurement because
it has only residual moisture content making it non-conductive.

The extent of the spatio-temporal variation of soil temperature determines the overall
significance of soil temperature as a factor influencing ECa measurements. Customarily,
electrical conductivity is expressed at a reference temperature of 25◦C. Electrolytic con-
ductivity increases at a rate of approximately 1.9% per◦C increase in temperature. For
comparison purposes, if the spatio-temporal variations in soil temperature are greater than
10◦C, then temperature data is needed to adjust the electrical conductivity to the reference
temperature of 25◦C. The following equation expresses electrical conductivity at a standard
reference temperature of 25◦C:

EC25◦C = fT ECT (1)

where EC25◦C is the electrical conductivity at the reference temperature of 25◦C, fT the
temperature conversion factor, and ECT the electrical conductivity at temperatureT (◦C). An
approximation equation for the temperature conversion factor has been derived bySheets
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and Hendrickx (1995):

fT = 0.4470+ 1.4034 exp

(
− T

26.815

)
(2)

Duplicate or replicate samples are collected at a minimum of 4–6 of the sample sites within a
study area. The primary and replicate soil core samples are taken within a 0.5–1.0 m radius.
If the field consists of beds and furrows, all primary and replicate samples are acquired from
the same respective locations of the bed–furrow.

An appropriate identification system for labeling the soil samples should be established.
Any metadata associated with each sample site and the samples such as observations about
the depth to water table, abrupt changes in soil texture, horizonation, mottling, color change,
surface crusting, etc. should be recorded. All soil samples should be placed in sealed,
air-tight containers to minimize the loss of moisture, which would affect water content
measurements. The soil samples should be immediately placed in an insulated storage
container (refrigerated, if possible) for protection and keep the samples cool.

3.4. Laboratory analysis of soil physico-chemical properties

General quality control and quality assurance protocols for laboratory analysis should be
followed (Klestra and Bartz, 1996). Soil samples should be analyzed as soon as possible after
their collection. All soil sample preparation and analyses should be conducted following
scientifically accepted procedures such as those outlined in the Soil Science Society of
America’s Methods of Soil Analysis (Sparks, 1996; Dane and Topp, 2002) and the United
States Department of Agriculture’s Handbook 60 (U.S. Salinity Laboratory Staff, 1954).

The appropriate analyses will depend upon the objective of the study. There is general
agreement by soil scientists upon recommended minimum data sets of soil parameters that
should be used to quantify soil quality including biological (microbial biomass, potentially
mineralizable N, and soil respiration), chemical (pH, ECe, OM, N, P, and K) and physical
(texture, bulk density, depth of rooting, infiltration, and water holding capacity) parameters
(Bouma, 1989; Larson and Pierce, 1991, 1994; Arshad and Coen, 1992; Doran and Parkin,
1994, 1996). However, soil quality is a function of the intended use of the soil; conse-
quently, the appropriate soil properties to assess quality will vary accordingly.Corwin et al.
(2003a)found the following properties appropriate for assessing quality of a salt-affected,
sodic soil used for agricultural production: ECe; pH; anions (HCO3−, Cl−, NO3

−, SO4
2−)

and cations (Na+, K+, Ca2+, Mg2+) in the saturation extract; trace elements (B, Se, As,
Mo) in the saturation extract; lime (CaCO3); gypsum (CaSO4); cation exchange capacity
(CEC); exchangeable Na+, K+, Mg2+, and Ca2+; ESP (exchangeable sodium percentage);
SAR; saturated hydraulic conductivity (Ks); and leaching fraction (LF). Site-specific crop
management applications generally require a knowledge of those soil physico-chemical
properties influencing the yield of a specific crop and impacting the environment. For in-
stance, for an irrigated, arid zone soil on the San Joaquin Valley’s west side,Corwin et al.
(2003b)found pH, B, NO3 and N, Cl−, ECe, LF, gravimetric water content,ρb, % clay,
and saturation percentage (SP) to be the most significant soil properties when considering
edaphic influences on within-field variations in cotton production.
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3.5. Stochastic and/or deterministic calibration of ECa to ECe or to other soil
properties

Apparent soil electrical conductivity can be calibrated to any soil property that signifi-
cantly influences the ECa measurement such as salinity, water content, clay content, SP, bulk
density (ρb), and OM. As previously mentioned, there are numerous studies that document
the relationships between soil electrical conductivity and various soil physical and chemical
properties, including soil salinity (Rhoades, 1992, 1996; Rhoades et al., 1989; Lesch et al.,
1995a; Williams and Baker, 1982), clay content (Williams and Hoey, 1987), depth to clay
layers (Doolittle et al., 1994), nutrient status (Sudduth et al., 1995), and moisture content
(Kachanoski et al., 1988), just to list a few. Additionally, there are articles documenting
the use of conductivity survey information to determine salt loading and field irrigation
efficiency (Rhoades et al., 1997; Corwin et al., 1999) and for estimating deep drainage
(Triantafilis et al., 2003). All the data analysis and interpretation presented in these papers
can be classified into two data modeling categories: deterministic and stochastic.

In general, stochastic models are based on some form of objective sampling methodology
used in conjunction with various statistical calibration techniques. The most common types
of calibration equations are geostatistical models (generalized universal kriging models and
cokriging models) and spatially referenced regression models.

Traditionally, universal kriging models have been viewed as an extension of the ordinary
kriging technique and used primarily to account for large-scale (non-stationary) trends in
spatial data. However, this modeling technique can be easily generalized to model ancillary
survey data (such as EM-38 data) when this data correlates well with some spatially vary-
ing soil property of interest (e.g., soil salinity). This generalization is commonly referred
to as a “spatial linear model” or “spatial random field model” in the statistical literature
(Christensen et al., 1992). This modeling approach requires the estimation of a regression
equation with a spatially correlated error structure. This type of model probably represents
the most versatile and accurate statistical calibration approach, provided enough calibration
sample sites are collected (n≥ 50) to ensure a good estimate of the correlated error structure.

Regardless of their versatility, spatial linear models are typically used in regional situa-
tions. Such an approach is rarely used for field-scale survey work, due to the large number
of required calibration soil samples, which makes this approach economically impractical.
Instead, most calibration equations of soil properties are spatially referenced regression
models. A spatially referenced regression model is just an ordinary regression equation
that includes the soil property being calibrated with ECa and trend surface parameters. The
model assumes an independent error structure that can usually be achieved through care-
fully designed sampling plans, such as the response-surface sampling design. In practice,
these are the only models that can be reasonably estimated with a limited number of soil
samples (n< 15).

Deterministic conductivity data modeling and interpretation can be carried out either
from a geophysical or a soil science approach. In the geophysical approach, mathemati-
cally sophisticated inversion algorithms are generally employed. These approaches, which
rely heavily on geophysical theory, have met with limited success for the interpretation of
near-surface ECa data. Part of the reason for the lack of success is that most geophysical
inversion approaches assume that (i) there are multiple conductivity signal readings avail-
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able for each survey point and (ii) that distinct, physical strata differences exist within the
near-surface soil horizon. Neither of these conditions are typically satisfied in most ECa
surveys.

A more common interpretation technique used, particularly in salinity inventorying work,
is to employ some form of deterministic ECa-to-salinity model (i.e., an equation which
converts ECa to ECe based on knowledge of other soil properties). One model of this type
that has been shown to be useful is the DPPC (dual pathway parallel conductance) model
developed byRhoades et al. (1989, 1990)and extended byLesch and Corwin (2003).
This model is based on the idea that electrical conductivity of soil can be modeled as a
multi-pathway parallel electrical conductance equation. This model has been shown to be
applicable to a wide range of typical agricultural situations (Corwin and Lesch, 2003). The
DPPC model demonstrates that soil electrical conductivity can be reduced to a nonlinear
function of five soil physico-chemical properties: ECe, SP, volumetric soil water content,
�b, and soil temperature. InRhoades et al. (1990)the DPPC model was used to estimate
field soil salinity levels based on ECa survey data and measured or inferred information
about the remaining soil physical properties.Corwin and Lesch (2003)andLesch et al.
(2000)showed that this model can also be used to assess the degree of influence that each
of these soil properties has on the acquired ECa-survey data.

Soil salinity, as conventionally expressed in terms of the electrical conductivity of the
saturated-paste extract, ECe, can be determined from ECa in two ways: a deterministic and
a stochastic approach (Rhoades et al., 1999b). The preferred approach will vary with the
size of the area to be assessed, availability of equipment, and the specific objectives. In
the deterministic approach, either theoretically or empirically determined models convert
ECa into ECe. Deterministic models are “static” (i.e., all model parameters are considered
known and no ECe data needs to be determined). For example, Eq.(3) from the DPPC
model ofRhoades et al. (1989)is a deterministic approach:

ECa =
(

(θss+ θws)2 · ECws · ECss

(θss · ECws) + (θws · ECs)

)
+ (θw − θws) · ECwc (3)

whereθw = θws + θwc = total volumetric water content (cm3 cm−3); θws andθwc are the volu-
metric soil water content in the soil-water pathway (cm3 cm−3) and in the continuous-liquid
pathway (cm3 cm−3), respectively;θss the volumetric content of the surface-conductance
(cm3 cm−3); ECws and ECwc the specific electrical conductivities of the soil-water pathway
(dS m−1) and continuous-liquid pathway (dS m−1); and ECss the electrical conductivity of
the surface-conductance (dS m−1). Soil ECa is converted into estimated soil salinity (i.e.,
ECe) using Eqs.(3)–(8)originally developed byRhoades et al. (1989):

θw = (PW · ρb)

100
(4)

θws = 0.639θw + 0.011 (5)

θss = ρb

2.65
(6)
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ECss = 0.019(SP)− 0.434 (7)

ECw =
[

ECe · ρb · SP

100· θb

]
(8)

where PW is the percent water on a gravimetric basis,ρb the bulk density (Mg m−3), SP the
saturation percentage, ECw the average electrical conductivity of the soil water assuming
equilibrium (i.e., ECw = ECsw = ECwc), and ECe the electrical conductivity of the saturation
extract (dS m−1).

The deterministic approach is the preferred approach when significant, localized varia-
tions in soil type exist in the field. However, this approach typically requires knowledge of
additional soil properties (e.g., soil water content, SP,ρb, temperature, etc.). In instances
where extensive soil property information is lacking, the stochastic approach is more appro-
priate. In the stochastic approach, statistical modeling techniques such as spatial regression
or co-kriging are used to directly predict the soil salinity from ECa survey data. In this ap-
proach, the models are “dynamic” (i.e., the model parameters are estimated using soil sample
data collected during the survey). The calibration is developed by acquiring soil salinity
data (or other soil property data such as SP, texture,ρb, etc.) from a small percentage of
the ECa measurement sites and estimating an appropriate stochastic-prediction model for
each depth increment using the paired soil sample and ECa data. Using the remaining ECa
data in conjunction with the established model, the soil salinity levels (or other calibrated
properties) are predicted at all of the remaining non-sampled, measurement locations. The
stochastic- and deterministic calibration approaches are described in detail byLesch et al.
(1995a, 1995b, 2000)and incorporated into the ESAP software (Lesch et al., 2000).

3.6. Spatial statistical analysis to determine the soil properties influencing ECa and/or
crop yield

In the past, the fact that ECa is a function of several soil properties (i.e., soil salinity,
texture, and water content) has sometimes been overlooked in the application of ECa mea-
surements to site-specific crop management. In areas of saline soils, salinity dominates the
ECa measurements and interpretations are often straightforward. However, in areas other
than arid zone soils, texture and water content or even OM may be the dominant properties
measured by ECa. To use spatial measurements of ECa in a soil quality or site-specific
crop management context, it is necessary to understand what factors are most significantly
influencing the ECa measurements within the field of study. There are two commonly used
approaches for determining the predominant factors influencing ECa measurement: (1)
wavelet analysis and (2) simple statistical correlation.

An explanation of the use of wavelet analysis for determining the soil properties influ-
encing ECa measurements is provided byLark et al. (2003). Even though wavelet analysis
is a powerful tool for determining the dominant complex interrelated factors influencing
ECa measurement, it requires soil sample data collected on a regular grid or equal-spaced
transect. Grid or equal-spaced transect sampling schemes are not as practical for deter-
mining spatial distributions of soil salinity (or some other correlated soil property) from
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ECa measurements as the statistical and graphical approach first developed byLesch et al.
(1995a, 1995b, 2000).

The most practical means of interpreting and understanding the tremendous volume of
spatial data from an ECa survey is through statistical analysis and graphic display. De-
tails describing the statistical and graphical approach for determining the predominant soil
property influencing ECa measurements are found inCorwin and Lesch (2003). For a soil
quality assessment a basic statistical analysis of all physico-chemical data by depth in-
crement provides an understanding of the vertical profile distribution. A basic statistical
analysis consists of the determination of the mean, minimum, maximum, range, standard
deviation, standard error, coefficient of variation, and skewness for each depth increment
(e.g., 0–0.3, 0.3–0.6, 0.6–0.9, and 0.9–1.2 m) and by composite depth (e.g., 0–1.2 m) over
the depth of measurement of ECa. In the case of ECa measured with ER (e.g., Veris or
fixed-array four electrode equipment), the composite depth over the depth of measurement
of ECa is based on the spacing between the electrodes, while in the case of EM-38 mea-
surements of ECa the composite depth for the EMh measurement is about 0–0.75 to 1.0 m
and 0–1.2 to 1.5 m for EMv. The calculation of the correlation coefficient between ECa
and mean value of each physico-chemical soil property by depth increment and composite
depth over multiple sample sites determines those soil properties that correlate best with
ECa and those soil properties that are spatially represented by the ECa-directed sampling
design. Those properties that are not correlated with ECa are not spatially characterized
with the ECa-directed sampling design indicating that a design-based sampling scheme
such as stratified random sampling is probably needed to better spatially characterize these
soil properties.

Crop yield monitoring data in conjunction with ECa survey data can be used from a site-
specific crop management perspective to (i) identify those soil properties influencing yield
and (ii) delineate site-specific management units (SSMU). For site-specific crop manage-
ment, an understanding of the influence of spatial variation in soil properties on within-field
crop-yield (or crop quality) variation is desired. To accomplish this using ECa, crop yield
(or crop quality)mustcorrelate with ECa within a field. If crop yield (or crop quality) and
ECa are correlated, then basic statistical analyses by depth increment (e.g., 0–0.3, 0.3–0.6,
0.6–0.9, and 0.9–1.2 m) and by composite depths (e.g., 0–0.3, 0–0.6, 0–0.9, and 0–1.2 m)
are performed. As before, the correlation between ECa and mean values of each physico-
chemical soil property for each depth increment and each composite depth establishes those
soil properties that are spatially characterized with the ECa-directed sampling design. The
correlations between crop yield (or crop quality) and physico-chemical soil properties will
also establish the depth of concern (i.e., the root zone of the crop), which will be the com-
posite depth that consistently has the highest correlation of each soil property (i.e., each soil
property determined to be significant to influencing yield) with crop yield (or crop quality).
Exploratory graphical analyses (i.e., scatter plots of crop yield or crop quality and each soil
property) are then conducted for the depth of concern to determine the linear or curvi-linear
relationship between the significant physico-chemical properties and crop yield (or crop
quality). A spatial linear regression (SLR) is formulated that relates the significant soil
properties as the independent variables to crop yield (or crop quality) as the dependent vari-
able. The functional form of the model is developed from the exploratory graphic analysis.
The model is adjusted for spatial auto-correlation, if necessary, using restricted maximum
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likelihood or some other technique. This entire spatial statistical analysis process is clearly
demonstrated byCorwin et al. (2003b)andCorwin and Lesch (2005b).

To use spatial measurements of ECa in a site-specific crop management context, it is not
only necessary to understand what factors most significantly influence ECa measurements
within the field of study, but also know those factors that most significantly influence within-
field variation in crop yield (or crop quality).Corwin et al. (2003b)used sensitivity analysis
simulations to arrive at the dominant edaphic and anthropogenic factors influencing within-
field cotton yield variations. Sensitivity analysis involves increasing a single independent
variable (i.e., edaphic factors) and observing the resultant effect on the dependent variable
(i.e., crop yield or crop quality). This is done for each independent variable. The relative
effect of each independent variable on the dependent variable determines the independent
variable that most significantly influences the dependent variable.

3.7. GIS development and graphic display of spatial distribution of soil properties

The organization, manipulation, and graphic display of spatial soil and ECa data is best
accomplished with a geographic information system (GIS). Spatial soil property data are
entered into any of the several GIS software packages such as ArcView or ArcGIS (see
footnote 1). Once the spatial data is entered, maps of the soil physico-chemical properties
can be easily prepared. A variety of interpolation techniques such as inverse-distance-
weighting (IDW) interpolation and various kriging approaches can be used. Previous studies
comparing interpolation methods for mapping soil properties have found mixed results. In
some instances kriging has been found to perform the best (Laslett et al., 1987; Warrick
et al., 1988; Leenaers et al., 1990; Kravchenko and Bullock, 1999) and in others IDW has
been found superior (Weber and Englund, 1992; Wollenhaupt et al., 1994; Gotway et al.,
1996). A common means of determining which method is the best to use for a particular
spatial data set is to use the statistical approach of jackknifing to establish the interpolation
method that minimizes the prediction error (Isaaks and Srivastava, 1989).

4. Additional considerations

There are a number of additional issues to consider in an ECa survey that may have
subtle effects on the reliability and accuracy of the ECa measurements. These effects relate
to factors that are easily overlooked, but may collectively mean the difference between
useful and unreliable data.

4.1. Accuracy issues concerning EM measurements

The issue of accuracy in EM measurements of ECa for precision agriculture is addressed
bySudduth et al. (2001). The authors point out that over time the EM-38 sensor is subject to
drift, which can contribute a significant fraction of the within-field ECa variation. A study
by Robinson et al. (2004)indicated that the drift observed in the EM-38 is likely due to
temperature effects on the EM-38 sensor and that a simple reflective shade over the sensor
could reduce drift effects considerably. However, an added precaution would be to conduct
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regular “drift runs” where repeated data is periodically acquired along a transect to adjust for
the drift in the post-processing of ECa data. Drift runs are conducted in the morning, noon,
and late afternoon to provide a range of diurnal temperature effects on the EM instrument.
The variations in drift provide the basis for adjusting the ECa measurements.

Positional offset can also be a problem due to both the distance from the sensor to the
GPS antenna and the data acquisition system time lags.Sudduth et al. (2001)found that
the sensitivity of ECa to variations in sensor operating speed and height was relatively
minor. Nevertheless, mobile ECa equipment should not be operated at speeds higher than
10 km h−1 to minimize positional offset effects.

4.2. Factors influencing within-field ECa variations and ECa-survey and soil-sampling
strategies to account for their occurrence

Variation of ECa within a field is due to spatial variation in soil properties influencing
ECa. The spatial heterogeneity of these soil properties is the consequence of the interaction
of (i) soil formation processes, (ii) meteorologic processes, and (iii) anthropogenic influ-
ences. Soil formation processes are the result of complex interactions between biological,
physical, and chemical mechanisms acting on a parent material over time and influenced
by topography. Meteorologic processes directly and indirectly influence soil formation pro-
cesses. Anthropogenic influences are typically related to management practices including
leaching fraction and irrigation water quality. To implement an efficient ECa survey and
associated soil sampling plan to reliably characterize spatial variability, an awareness and
understanding of the factors influencing within-field ECa variations are crucial. Suggestions
for ECa surveys and sampling strategies are provided to account for the occurrence of the
deterministic and stochastic mechanisms that create local and within-field ECa variations.

4.2.1. ECa variation with salinity
In semi-arid regions where saline seeps occur due to shallow water tables and in arid agri-

cultural areas, salinity is generally the soil property that dominates the ECa measurement.
Salinity accumulation occurs where evaporation or evapotranspiration exceed irrigation
and/or precipitation. The predominant mechanism causing the accumulation of salt in irri-
gated agricultural soils is loss of water through evapotranspiration, leaving ever increasing
concentrations of salts in the remaining water. Unlike texture or bulk density, which are
static properties of soils, salinity is a dynamic property. It varies temporally and spatially
with depth and across the landscape and exhibits high variation across a field and moderate
to high local-scale variability (Corwin et al., 2003a). Local-scale variation determined from
near-surface furrow samples acquired 0.5 m apart can vary anywhere from 10 to 100% due
to micro-scale soil composition characteristics and/or fluctuations in preferential water flow.

Electromagnetic induction instrument readings tend to average out this local-scale vari-
ation. The degree to which this averaging occurs depends directly upon the instrument’s
“foot print” (i.e., the volume of soil incorporated into the signal response). For example,
an EM-38 signal will be influenced by any electrically conductive material within about
1–2 m of the instrument (both laterally and vertically). Hence, it is typically assumed to
have about a 1.5 m foot print.
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Because the volume of soil measured by the EM-38 is so much larger than the volume
obtained by conventional soil sampling techniques, an estimate of the degree of local-scale
salinity variation needs to be acquired for calibration model purposes and for soil quality
assessments of spatial variability. Such an estimate can be acquired by obtaining duplicate
or replicate sample cores within a 1 m radius at some of the calibration sites during the soil
sampling process. The replicate cores can then be used to estimate the local-scale salinity
variation (referred to as the “nugget variation” in geostatistical models and as the “pure
error estimate” in spatial regression models). The measured salinity data from these cores
can be used to construct a residual autocorrelation test, known as a “lack-of-fit” test, for
assessing the spatial residual independence assumption (Lesch et al., 1995a). Techniques
for estimating the local-scale salinity variation and performing residual lack-of-fit tests are
described inLesch et al. (1995a).

In a typical 12–16 site calibration sampling design, replicate sample cores are commonly
taken at 4–6 of the calibration sites. These 4–6 sites can either be chosen at random (from
amongst the 16 sites) or selected throughout the survey area. Additionally, the core separa-
tion spacing should be the same at all sites and both the primary and replicate cores should
always come from the same location with respect to the bed–furrow environment (i.e., both
from the bed, or both from the furrow).

Variations in salinity through the soil profile also influence the ECa measurement. This
influence is particularly complex when ECa is measured with EM because the depth-
weighted response function of the instrument (e.g., EM-31 or EM-38) is non-linear. The
depth-weighted nonlinearity is shown inFig. 3, which illustrates the cumulative relative
contributions to ECa [i.e., R(z)] for a homogeneously conductive material below a normal-
ized depth ofzbased on Eqs.(9) and (10)from McNeill (1980)for vertical and horizontal

Fig. 3. Cumulative relative contribution of all soil electrical conductivity,R(z), below various depths for the EM-
38 apparent soil electrical conductivity reading when the device is held in a horizontal (parallel) and vertical
(perpendicular) position. Taken fromMcNeill (1980).
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dipoles, respectively:

Rv(z) = 1

(4z2 + 1)1/2
(9)

Rh(z) = (4z2 + 1)
1/2 − 2z (10)

When considering 0.3 m depth increments through the soil profile, the greatest response
for EMh occurs over the 0–0.3 m depth increment and over the 0.3–0.6 m depth increment
for EMv. Nevertheless, it is possible to determine the general shape of the salinity profile
by the relative magnitudes of the EMh and EMv readings at a point in the field. For salinity-
driven ECa surveys, if EMh > EMv, then the salinity profile is inverted and decreases with
depth; if EMh < EMv; then salinity increases; if salinity is uniform, then EMh ≈ EMv.

4.2.2. ECa variation with water content
Soil water content variations affect ECa measurements. Like salinity, soil water content

is a dynamic soil property that varies with depth and across the landscape, generally with
moderate to high local-scale variability. In areas under uniform irrigation management prac-
tices, the degree of spatial water content variability is typically minimal provided significant
soil texture variation is not present. However, some fields demonstrate gradual trends in wa-
ter content across the extent of the field, which may be due to gradual changes in shallow
water table levels close to the depth of penetration of measurement or to abrupt textural dis-
continuities, or due to non-uniformity of water application (e.g., flood irrigation has a trend
of high to low from the head water to tail water ends of a field, respectively). In instances
where gradual changes in the soil water content level occur, trend surface parameters in the
regression model can be used.

Like salinity, variations in the water content through the soil profile influence the ECa
measurement and this influence is particularly complex when using EM. As with salinity,
it is possible to determine the general profile shape of water content. For fields where water
content is the dominant soil property influencing the ECa measurement, if water content
decreases with depth, then EMh > EMv; if water content increases, then EMh < EMv; if
water content uniform, then EMh ≈ EMv.

It is important to remember that if the water content of the soil drops too low (e.g.,
<0.10 cm3 cm−3), then the EM signal readings can become seriously dampened. In most
practical applications, reliable EM signal data will be obtained when the soil is at or near
field capacity. Surveying dry areas should be avoided. This is especially true for surveys
that use ER, which requires close contact between the electrodes and soil that can only be
attained when the soil is moist.

4.2.3. ECa variation induced by changes in soil texture
Soil texture can cause extremely complex spatial patterns of ECa. Under a uniform

irrigation distribution, water content will generally coincide with texture. Soils higher in
sand have lower water contents than soils higher in clay. Minimal complexities in spatial
patterns of ECa occur (i) when there is minimal soil texture variability, (ii) when the texture
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changes are smooth and gradual across the field, or (iii) when the texture, water content,
and salinity variations are strongly correlated.

4.2.4. ECa variation induced by other soil properties
Other physical soil properties also affect the ECa survey readings to various degrees.

These properties include OM, magnetic susceptibility, and temperature. Significant variation
in these properties needs to be present before any meaningful influence upon the ECa signal
reading occurs. With respect to temperature, a 1◦C change in temperature throughout the
entire soil profile typically causes no more than a 2% change in the EM-38 signal readings.
Since soil temperature fluctuations below 0.3 m in the soil profile occur rather slowly, the
entire survey process can usually be completed before a significant change in the bulk-
average soil profile temperature occurs. Magnetic susceptibility is seldom a factor except
for soils high in free iron oxides. Apparent soil electrical conductivity variation related to
OM has been investigated byJaynes (1996).

4.2.5. ECa variation with depth
The variation of ECa with depth is primarily due to gradations in salinity, texture,

and water content through the soil profile. Soil salinity levels can change quite rapidly
with depth; it is not unusual in some arid zone areas to see relative salinity profile
levels fluctuate by an order of magnitude within the top meter of soil. Water content
tends to increase with depth and will vary according to textural distribution. Textu-
ral distribution is mainly a consequence of soil formation processes. However, anthro-
pogenic effects can result in increased uniformity of texture within the plow layer or
can produce other localized variations. Salinity will vary in the soil profile primarily
from the process of leaching with plant, chemical, and topographic effects contributing to
variations.

Devising a sampling scheme that accounts for temporal and depth variations while main-
taining accurate and consistent sampling depths throughout a survey area is critical. Without
prior knowledge of the distribution of salinity, water content, and texture within a profile,
it can be difficult to infer the appropriate sample depth design. For this reason, soil cores
should be acquired to a depth of at least 1.2–1.5 m at each sample site. If resources permit,
each core can be sliced into subsamples, thereby facilitating the estimation of prediction
functions (regression models) for multiple sample depths.

Electrical resistivity and EM techniques are both well suited for field-scale applications
because their volumes of measurement are large, which reduces the influence of local-scale
variability. However, ER has a flexibility that has proven advantageous for field application,
i.e., the depth and volume of measurement can be easily changed by altering the spacing
between the electrodes. This allows the ECa for a discrete depth interval of soil to be easily
calculated with a fixed-array four electrode by measuring the ECa of successive layers for
increasing inter-electrode spacings and using the following equation (Barnes, 1952; Telford
et al., 1976):

ECx = ECai − ECai−1 =
(

ECaiai − ECai−1ai−1

ai − ai−1

)
(11)



D.L. Corwin, S.M. Lesch / Computers and Electronics in Agriculture 46 (2005) 103–133 123

whereai is the inter-electrode spacing, which equals the depth of sampling,ai−1 the previous
inter-electrode spacing, which equals the depth of previous sampling, and ECx the apparent
soil electrical conductivity for a specific depth interval.

Electromagnetic induction can also measure ECa at variable depths determined by the
height of the EM instrument above the soil surface. Unlike ER, depth profiling of ECa with
EM is mathematically complex (Borchers et al., 1997; McBratney et al., 2000; Hendrickx
et al., 2002b). Measurements of ECa at variable depths with EM are usually achieved
by positioning the EM instrument at various heights above the soil surface in either the
vertical (EMv) or horizontal (EMh) dipole mode (Rhoades and Corwin, 1981; Corwin and
Rhoades, 1982). Though not required, the measurement of ECa near the soil surface (i.e.,
top 0.25–0.5 m) along with spatially associated larger soil volume ECa measurements with
EM equipment can be used to increase the accuracy of the fitted prediction functions that
define ECa profile variation (Lesch et al., 1992). Insertion four-electrode probes and small,
hand-held fixed-arrays are both very useful for measuring the soil ECa within the first
0.25–0.5 m of topsoil.

One sampling strategy commonly used in association with an ECa survey is to acquire
soil samples at each sample site in 0.3 m increments, typically down to a depth of either
1.2 or 1.5 m. When sampling by hand (i.e., using a hand auger), each soil sample can be
removed individually. If a drill rig is available, then the entire core is usually bored at one
time and then split into subsamples after being brought to the surface. To minimize temporal
changes that may occur in dynamic soil properties such as water content and salinity, ECa
surveys and associated soil sampling are conducted when the soil is at or near field capacity
(i.e., water content of soil after free drainage has occurred, generally 3 and 4 days following
an irrigation).

4.2.6. ECa variation induced by surface topography
Surface topography plays a significant role in influencing spatial ECavariation. Slope and

aspect will determine the level and location of runoff and infiltration, which will influence
the variation in water content and salinity at local scales and larger. Areas where the slope
is steep tend to have lower water content than areas where a depression occurs. All other
factors being equal, flat areas tend to be more spatially uniform in areal variation of water
content. The influence of surface topography on salinity distribution coincides with the
influence of surface topography on water flow gradients, which result in salt transport.

The bed–furrow environment is an example of surface topography that can have subtle
local-scale variation effects. The bed–furrow topography can be a source of considerable
water and salinity variation, particularly over the cropping season. A percentage of the
irrigation water applied to a furrow will move laterally and upwards into adjacent beds due
to capillary flow. This water movement in turn will carry near-surface soluble salts up into
the bed. In flood irrigated fields the relative difference between the near-surface furrow and
bed salinity levels can become pronounced over time.

Fig. 4 displays the geometrical distribution of soil salinity throughout the near-surface
bed–furrow environment within a fixed-bed, flood-irrigated cotton field in the Coachella
Valley, California (sampled in 1992). The high mean salinity level was 23.2 dS m−1 through-
out the bed–furrow; the ratio of bed to furrow near-surface salinity levels was 4:1. At the low
level (5.8 dS m−1) this ratio actually increased to 8:1.Fig. 4indicates that the overall mean
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Fig. 4. Two-dimensional salinity distribution within the bed–furrow.

salinity level would have been very poorly estimated by samples acquired either only in the
furrows or in the bed. In this particular survey, it took 14 soil samples at each sample site to
adequately describe the two-dimensional pattern of salinity present within the bed–furrow
environment. The main point conveyed byFig. 4 is that more extensive sampling schemes
must be considered for bed–furrow systems, if knowledge of the two-dimensional salin-
ity and/or water content distributions is an essential objective of the survey. However, if a
detailed knowledge of the two-dimensional distributions of a bed–furrow system is unnec-
essary, then there is a critical need for consistency with respect to soil core locations. In
these instances, all soil cores should be sampled from the same place within the bed–furrow.
Furthermore, the ECa survey data, particularly from EM equipment, and soil sample cores
should be acquired from exactly the same location within the bed–furrow. For example, if
the ECa data are acquired over the furrows, then the soil samples should also be acquired
from the furrows.

Composite or bulk sampling strategies for averaging variations in a bed–furrow sys-
tem are generally not recommended. In composite sampling, soil samples would be ac-
quired from both bed and furrow locations and then mixed together in an effort to obtain a
more “representative” sample. Composite samples are not recommended for two reasons.
First, it doubles the field work without providing any knowledge of the two-dimensional,
bed–furrow salinity distribution and second, it often introduces more variability into the
sample data (through poor mixing processes) than it removes through averaging.

Irrigated, agricultural land is typically laser-leveled to improve irrigation efficiency.
Various leveling designs are used, depending on the method of irrigation and the agricultural
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crop under production. The three most common designs include dead leveling, single-slope
leveling, and dual slope leveling. All these three designs create a theoretical plane that can
be written mathematically as:

Surface elevation= α0 + α1x + α2y (12)

wherexandy represent the physical (x, y) coordinates, and theα0, α1 andα2 coefficients the
primary and secondary slopes of the field. Eq.(12)is referred to as a first-order trend surface
equation. The regression relationship between the geo-referenced ECa measurements and
soil properties (i.e., salinity, water content, texture) influencing the ECa measurement can
be influenced by gradual changes in salinity, water content, and/or texture across the survey
area due to changes in elevation. These gradual changes in salinity, water content, and/or
texture due to elevation can be taken into account through the inclusion of a first-order or
second-order trend surface equation in the regression analysis.

If an ECa survey is conducted on non-graded farmland, which exhibits significant local
variation in surface elevation, then it will usually be necessary to conduct a surface elevation
survey along with the ECa survey. This elevation data can then be directly incorporated into
any regression analyses relating ECa to soil properties or into the sample design strategy.

4.2.7. ECa variation induced by traffic patterns
Another source of potential ECa variation arises from soil compaction caused by repet-

itive traffic patterns of heavy agricultural equipment. In many fields, heavy equipment is
consistently driven down the same set of furrows when performing tillage and cultivation
operations over the growing season. This leads to a systematic pattern of compaction in a
subset of furrows throughout the field.

Fig. 5displays the EM-38 horizontal (EMh) readings acquired in 1991 along 30 adjacent
furrows in a buried drip-irrigated cotton field (Westlands Water District, California) subject
to repetitive traffic influences. In this case the traffic pattern induced a clearly cyclic pattern in
the EMh readings; the highest conductivity readings consistently occurred in the compacted
furrows whereρb was characteristically higher near the soil surface.

The data shown inFig. 5 is atypical. In general, compaction induced cyclic patterns
do not have such pronounced effects on ECa. Nonetheless, caution should be taken to
systematically avoid taking ECa measurements down compacted furrows, particularly with
EM equipment. Excessive soil compaction will nearly always have at least some effect
on theρb, soil salinity, and water content levels. Random surveying (and sampling) of
both compacted and non-compacted furrows in the same field will introduce variability
that should be avoided whenever possible. A simple, but effective, means of determining
furrows that have been compacted by repeated traffic from heavy equipment is by pushing a
long screwdriver or rod into the furrow to determine if the resistance is greater than adjacent
furrows.

4.2.8. ECa variation induced by irrigation management practices
Irrigation management has a pronounced effect on determining areal and profile ECa

distributions within a field. The amount and frequency of irrigation will directly influence
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Fig. 5. Variations of ECa due to compaction from repeated heavy equipment operation on a drip-irrigated cotton
field.

the movement of water and soluble salts through the profile and across the field. The water
content of the soil during the ECa survey will be at least partially determined by the elapsed
time from the last irrigation event, the presence or absence of a crop, and if present, the
maturity of the crop.

Since a change in irrigation management (e.g., drip, sprinkler, or flood irrigation) can
seriously affect the three-dimensional salinity and water content distributions within a field,
it is important to avoid conducting an ECa survey (and/or soil sampling) for an area under
more than one irrigation management strategy. This means that any survey area must be
restricted to farmland under similar irrigation management practices. Each survey must be
conducted entirely within a single, homogeneous irrigation management area. The failure
to restrict EM readings to an area under a single water management strategy can result in
serious regression model and sample design bias with inflated errors that corrupt the entire
surveying process.

5. Conclusions

All landscape-scale environmental and agricultural studies involving soil require a spa-
tial and often times a temporal knowledge of soil physico-chemical properties. Surveys of
ECa provide one of the most reliable and comprehensive means for obtaining this spatio-
temporal information. The development of mobile ECa equipment has made it possible
to characterize spatial variability of a variety of physico-chemical properties both rapidly
and cost effectively. Nevertheless, previous surveys have met with inconsistent results at
times due to the inexperience of the researcher and/or the lack of a standardized set of ECa
survey protocols. Concomitantly, the ability to use ECa survey information in a compar-
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ative sense from one site to another and between different researchers or to collectively
build a database comprised of ECa measurements from multiple locations by multiple re-
searchers requires a framework that standardizes the collection of ECa survey and associated
spatial edaphic information. The outlined protocols for conducting ECa surveys provide a
means of characterizing the spatial variability of soil physico-chemical properties that can
be used in site-specific crop management, landscape-scale modeling of non-point source
pollutants in the vadose zone, and soil quality assessment. Guidelines are also presented for
understanding and interpreting ECa survey measurements. It is the intent of the developed
protocols to improve the reliability, consistency, and compatibility of ECa survey measure-
ments and their interpretation for characterizing spatial variability of soil physico-chemical
properties.
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