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A B S T R A C T

Irrigation scheduling decision-support tools can improve water use efficiency by matching irrigation re-
commendations to prevailing soil and crop conditions within a season. Yet, little research is available on how to
support real-time precision irrigation that varies within-season in both time and space. We investigate the in-
tegration of remotely sensed NDVI time-series, soil moisture sensor measurements, and root zone simulation
forecasts for in-season delineation of dynamic management zones (MZ) and for a variable rate irrigation sche-
duling in order to improve irrigation scheduling and crop performance. Delineation of MZ was conducted in a
5.8-ha maize field during 2018 using Sentinel-2 NDVI time-series and an unsupervised classification. The
number and spatial extent of MZs changed through the growing season. A network of soil moisture sensors was
used to interpret spatiotemporal changes of the NDVI. Soil water content was a significant contributor to changes
in crop vigor across MZs through the growing season. Real-time cluster validity function analysis provided in-
season evaluation of the MZ design. For example, the total within-MZ daily soil moisture relative variance
decreased from 85% (early vegetative stages) to below 25% (late reproductive stages). Finally, using the Hydrus-
1D model, a workflow for in-season optimization of irrigation scheduling and water delivery management was
tested. Data simulations indicated that crop transpiration could be optimized while reducing water applications
between 11 and 28.5% across the dynamic MZs. The proposed integration of spatiotemporal crop and soil
moisture data can be used to support management decisions to effectively control outputs of crop × environment
× management interactions.

1. INTRODUCTION

Irrigated agriculture is essential to global food production, espe-
cially because of projected population growth (Döll, 2002). Irrigation
water is commonly applied uniformly over an entire field. Yet, field soil
water content is typically non-uniform because of spatial variability in
soil hydraulic properties (Hawley, 1983), topography (Burt and
Butcher, 1985), and vegetation growth (Le Roux et al., 1995). When
field spatial variability is significant (Baveye and Laba, 2014; Thorp,
2019), differential irrigation water management that accounts for
variability may improve the cost-effectiveness of irrigation (Liang et al.,
2016; Martini et al., 2017) by increasing for instance water use effi-
ciency and productivity as well as decreasing nutrient leaching.

Precision agriculture seeks to optimize farming operations via site-
specific management plans that vary the application of nutrients and
water across a field based on variations in soil and crop conditions
(Zhang et al., 2002). Field management is prescribed over contiguous
areas that have homogeneous soil properties and crop conditions. These
areas are called management zones (MZ). Different clustering methods,
including k-mean, ISODATA, and Gaussian Mixture, are available for
delineating MZs based on different data sources (Galambošová et al.,
2014; Martinez-Casasnovas et al., 2012; Schepers et al., 2004). Com-
monly, yield maps, topography, remote sensing data, and soil apparent
electrical conductivity are used to delineate MZs (Bellvert et al. 2012,
Liu et al., 2018; Scudiero et al., 2018; Ohana-levi et al., 2019). Re-
cently, open access or low cost remote sensing data are being used in
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agriculture to obtain spatiotemporal information on biophysical para-
meters of vegetation (Fontanet et al., 2018).

Several researchers have defined MZs in specific fields with the goal
of increasing yield and decreasing water use. Inman et al. (2008) and
Schenatto et al. (2015) used NDVI and other spectral vegetation indices
to delineate MZs with NDVI data and different crop indices. Liu et al.
(2018) delineated MZs based on yield and maps of different vegetation
indices. Scudiero et al. (2013) argued that spatial information of soil
properties known to affect plant growth should guide MZ delineation.
They modeled maize yield spatial variability as a function of salinity,
texture, carbon content and bulk density, using geospatial apparent soil
electrical conductivity and bare soil reflectance measurements as
proxies for these soil properties. A similar study was presented by Reyes
et al. (2019), in which MZs were defined using information of both
NDVI and soil properties. Georgi et al. (2018) developed an algorithm
to delineate MZs automatically based on remote sensing data. However,
one of the disadvantages of this algorithm is that it does not work
properly in fields with strong time-dependent spatial patterns. All the
above-mentioned studies consider MZs to be static and assume no dy-
namic pattern during the growing season. However, in fields where
crop spatial patterns change over time, some researchers have ad-
vocated for MZ delineation to also be dynamic (Cohen et al., 2016;
Evans et al., 2013; Haghverdi et al., 2015; Scudiero et al., 2018).

Soil moisture sensors constitute a vital tool for real-time monitoring
of soil water content dynamics in the field. Although sensors monitor
soil water content at a single point, spatial and temporal variations of
soil water content and their interactions with crops can be analyzed if
several sensors are installed across the field (Biswas, 2014; Biswas and
Si, 2011; Huang et al., 2019; Yang et al., 2016). These measurements
can provide information about the source of variability between dif-
ferent MZs and aid in their delineation.

In this study, we integrate crop spatial and temporal information
from high-resolution remote sensing, soil water sensor data, and nu-
merical model simulations to investigate irrigation scheduling for dy-
namic management zones. Specifically, we: i.) characterize the spatial
and temporal dynamics of crop-soil-water relations of a maize field, ii.)
delineate and evaluate temporally dynamic management zones for
variable rate irrigation, and iii.) provide a workflow for in-season op-
timization of irrigation scheduling and water delivery management.

2. MATERIALS AND METHODS

2.1. Study Site

The study was carried out in a 5.8-ha maize (Zea mays L.) field

located in Raïmat (Lleida, Spain) (Fig. 1). The study region has a typical
semi-arid Mediterranean climate, with an average summer temperature
and rainfall of 24 °C and 45 mm. The local climate was Mediterranean,
with an average annual rainfall and reference evapotranspiration (ET )0
of 341 mm and 1.060 m, respectively.

Land use at the study site has changed over the years (Fig. A.1 of
Appendix A). Originally, the site was a forest where no tillage occurred.
Approximately 30 years ago, the land was converted to a vineyard. The
topography of the field was modified, with soil being added or removed
in various sections, such that the site can now be regarded as having an
anthropogenic soil. In 2016, two years year before this study, grape-
vines were removed and maize was grown at the site.

2.2. Sowing and Irrigation

All agronomic management and design at the field site was im-
plemented by cooperators without our input. The field was sectioned
into four plots that were each sowed with a different maize variety
(Fig. 1). The varieties were, from west to east: p0937 (DuPont Pioneer,
Johnston, IA), d6980 (DEKALB Genetics Corporation, Dekalb, IL),
p1524 (DuPont Pioneer), and d6780 (DEKALB). All plots were sown on
May 3, 2018, at a sowing density of 90000 seeds·ha-1. Plants started to
emerge on May 12, 2018. Data from the seed companies indicated that
the varieties sowed on the west and east edges (p0937 and d6780) had
a faster vegetative growth than d6980 and p1524. However, all vari-
eties were anticipated to reach full maturity between 125 to165 days
after sowing. All the varieties were harvested on September 22, 2018.

The field was irrigated with a solid set sprinkler system (Nelson
Irrigation Corporation, Walla Walla, WA), with sprinklers located at a
15 x 15 m spacing. Water was delivered at a rate of 6.5 L m-2 h-1.
Irrigation was uniformly applied over the field with scheduling and
depths determined using a crop coefficient approach (FAO56). For most
of the site, irrigation ended 115 days after sowing. But, in two 0.3-ha
sections at the north-east end of the site, irrigation was halted 74 days
after sowing due to soil waterlogging.

2.3. Soil, Environment, and Crop Measurements

Field data were collected between May and September 2018. Soil
moisture, soil and crop parameters, environmental variables, and NDVI
time-series were measured. In May 2018, 33 capacitive EC-5 soil
moisture sensors (METER Group, Pullman, WA, USA) were installed at
11 locations named P1, P2, …, and P11 (Fig. 1). The sensors were in-
stalled at 15, 35, and 50 cm depths. Water content data were registered
every 30 minutes using an EM5b data logger (METER Group). The

Fig. 1. Study site location, soil moisture station locations, and maize variety plantings. The blue area represents maize variety p0937 (a combination of 500 and 600
series), the red area is variety d6980 (700 series), the yellow area is p1524 (700 series), and the green area is d6780 (600 series).
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manufacturer’s generic sensor calibration was used, which has a re-
ported accuracy±0.03 cm3 cm−3 (Campbell and Devices, 1986)

At each soil moisture station, three disturbed soil samples were
collected at 0-5, 5-35, and 30-60 cm depth for organic matter (OM) and
soil texture analyses. The Walkley-Black method was used to measure
OM (Nelson and Sommers, 1996), whereas soil particle size distribution
was measured according to the hydrometer method (Gee and Bauder,
1986). Particles were categorized into the following size classes: clay
(soil particle diameter, D<0.002 mm), fine silt (0.002<D<0.02
mm), coarse silt (0.02<D<0.05 mm) and sand (0.05<D<2 mm).
Undisturbed soil cores were also collected at the same locations and
depths for measuring soil hydraulic properties. Saturated hydraulic
conductivity was measured with a KSat device (METER Group). Soil
water retention measurements were obtained using Hyprop and WP4C
instruments (METER Group). The Hyprop device utilizes an evapora-
tion method (Schelle et al., 2013) and was used to obtain retention data
from 0 to −85 kPa, whereas the WP4C device implements a chilled
mirror dew point technique and was used to obtain measurements
down to −300 MPa. The van Genuchten equations (van Genuchten,
1980v) were used to model the retention data and the soil unsaturated
hydraulic conductivity. In the van Genuchten model, the Ks parameter
was set to the saturated conductivity measured with the KSat device,
the saturated water content parameter ( s) was set to the soil porosity
estimated by the Hyprop device, and the residual water content para-
meter ( r) was set to the minimum water content recorded by the WP4C
device. The van Genuchten shape parameters and n were determined
by fitting the model retention function to the measured data using the
RETC software package (van Genuchten et al., 1991v). Principal com-
ponent analysis (PCA) (Abdi and Williams, 2013; Martini et al., 2017)
was used to investigate the relationships between soil texture, OM, bulk
density, and hydraulic parameters. The PCA calculations were done
with Statistica 12 (StatSoft Inc. Tulsa, OK, USA).

A weather station consisting of an ECRN-100 rain gauge (METER
Group), a cup anemometer (Davis Instruments, Hayward, CA, USA),
and PYR pyranometer and VP-4 relative humidity and temperature
sensors (METER Group) was installed 150 m from the north-east corner
of the field. The measured temperature, wind speed, relative humidity,
and solar radiation were used to calculate daily reference evapo-
transpiration (ET0) using the Penman Monteith equation as specified in
FAO Irrigation and Drainage Paper No. 56 (Allen et al, 1998; hereafter
“FAO56”). The estimated ET0 was converted into daily water require-
ments or potential evapotranspiration (ETc) using the maize crop
coefficient (kc) from FAO56. Maximum and minimum daily tempera-
ture measurements were used to calculate growing degree days (GDD)
according to FAO56 and to determinate reference maize growing stages
(Ritchie et al., 1997).

Remote sensing data obtained from Sentinel 2 were used to de-
termine normalized difference vegetation index (NDVI ) Eq. (1) (Rouse
et al., 1974),

=
+

NDVI NIR Red
NIR Red

( )
( ) (1)

where NIR and Red are measured reflectance values in the near-infrared
and visible red regions, respectively. NDVI was used to evaluate spatial
variability in the field. Remote sensing data were downloaded with 10-
m spatial resolution every 5 days unless there was cloud coverage. The
first and last images downloaded were the 15th and 135th day after
sowing. Remote sensing data were downloaded from Google Earth
Engine web page (https://earthengine.google.com).

2.4. Management Zones Delineation

NDVI was used to characterize the spatial variability of crop vigor
through the growing season. A k-means (also known as “fuzzy c-
means”) unsupervised clustering algorithm (Odeh et al., 2010) was
used to classify the NDVI data into temporally dynamic MZs. The

Grouping Analysis tool in ArcMap 10.4.1 (ESRI, Redlands, CA) was used
for the MZ delineation. Anytime a new Sentinel 2 NDVI scene was
available at the site, a new MZ scheme was delineated. Designs having 2
to 6 MZs were considered. The Calinski–Harabasz criterion (CHC)
(Harabasz et al., 1974), Eq. (2), was used to evaluate the clusters and
MZ delineations and select the optimum number of MZs. The CHC, also
known as a pseudo F-statistic, measures the ratio of between-MZ dif-
ferences and within-MZ similarity. It is formulated as:

= BMZSS MZn
WMZSS N MZn

CHC /( 1)
/( ) (2)

where N is the number of pixels, MZn is the number of considered
zones, BMZSS is the between-zones sum of squares, and WMZSS is the
within-zone sum of squares. Large CHC values indicate high within-MZ
homogeneity and between-MZ heterogeneity.

The NDVI averages and maximum and minimum values within each
MZ were calculated for further comparison between different MZs. MZs
were not defined for the beginning of the season (0-20 day after sowing)
because plants had not yet germinated or were not big enough to in-
fluence NDVI , and for the end of the season (beyond 130 days after
sowing) because in that period the crop is in a late phenological stage
and not irrigated. Differences in soil properties across MZs over time
were assessed using a Kruskal-Wallis (Kruskal and Wallis, 1952) rank
test (i.e., a non-parametric analysis of variance), calculated with Sta-
tistica 12.

Additionally, we considered an alternative static delineation
scheme, subdividing the site into four contiguous fields corresponding
to the planted maize varieties. The CHC was calculated for each
available NDVI scene to compare the variety-based MZ approach to the
dynamic NDVI -based MZ delineation.

2.5. Management Zone Available Water

Soil-water status for the MZs was modeled as plant available water
(AW ) Eq. (3) (Liang et al., 2016; Vellidis et al., 2016; Zurweller et al.,
2019):

=AW t
Z

t
z( ) 1 ( )j

m

j m j m

j m j m
m

T

,
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,
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,
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,

(3)

where AW t( )j is the profile average available water at monitoring
station j and time t , m indexes the measurement depths, zm (cm) is
the depth increment associated with the moisture sensor at depth m,

=Z zmT (cm) is the total soil profile depth, j m, (cm3 cm-3) is soil
water content, j m

wp
, (cm3 cm-3) is the wilting point (water content at

−1500 kPa), and j m
fc

, (cm3 cm-3) is field capacity (determined using
the simulated soil drainage method of Twarakavi et al. (2009)). The
AW for a MZ was defined to be the average AW for all monitoring
stations located within the MZ. Note that the MZ design changed over
the growing season, so the MZ membership of some stations also
changed. In addition to the CHC calculation on the NDVI data, the
spatiotemporal variability of AW was also used for in-season evaluation
of the dynamic MZ-design. Following Fraisse et al. (2001), we calcu-
lated the daily weighted within-MZ AW variance (4),

= ×S
N N
N N N N

AW t AW1 [ ( ) ¯ ]MZ
S t

S t S t j k

j
k i

2

,

2
i

i

i (4)

where SMZ
2

i is the daily weighted AW variance within management
zone i; j indicates the monitoring stations within management zone i; k
indicates the measurement times during the current day; NSi is the
number of stations in management zone i; =N ( 11)S is the total number
of stations in the field; =N ( 48)t is the number of measurements per day
(every 30 min), AW j is defined by (3), and AW̄i is the average profile
AW across monitoring stations in management zone i and measurement
times in the current day. The total within-zone variance is equal to the
sum of the weighted within-zone variances, =S Si MZ

2 2
i . By comparing
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S2 with the total daily field-wide AW variance, it is possible to de-
termine how much was gained in terms of AW uniformity by dividing
the field into MZs (Fraisse et al., 2001).

3. RESULTS AND DISCUSSION

3.1. Soil Properties

Soil texture, organic matter (OM) content and bulk density ( b)
values measured at each station are reported in Table 1. The soil texture
classes (USDA system) of samples taken from the 11 locations were clay
loam (42.4% of samples), loam (42.4%), and silty clay loam (15.2%).
Locations on the east side (P1, P6, P7, P11) of the field had, on average,
lower sand and higher silt and clay contents than those on the west side.
Average OM contents ranged between 0.57 and 1.96 %, which is typical
for agricultural soils in this region (Romanyà and Rovira, 2011). Fitted
and measured parameters for the soil hydraulic properties at each sta-
tion are reported in Table 2. Consistent with the spatial trend in soil
texture noted previously, the SWRCs measured on the east side of the
study site (stations P1, P6, P7, P11) had lower fitted n values than in the
rest of the site. On the wet end of a retention curve, a lower n value
corresponds to a more gradual transition in water content as pressure
head changes. Fig. A.2 of Appendix A compares SWRCs observed at the
locations on the west (P9) and east (P11) sides of the field.

The principal component analysis (PCA) indicated that eight prin-
cipal components were needed to explain 95% of the variability in the
soil dataset. The first three components, PC1 (30.9%), PC2 (18.6%),
and PC3 (15.9%), explained around two thirds of the variance in the
soil dataset. Particularly, PC1 indicated that clay content clustered (was
positively correlated) with θwp, θfc, and α. The PC1 also indicated that
clay content was negatively correlated with sand content, θr, and n.
Further detail about PC1, PC2, and PC3 are reported in Fig. A.3 of
Appendix A.

3.2. Remote Sensing and Dynamic Management Zones Delineation

The site average, minimum, and maximum NDVI values for each
available Sentinel 2 scene are reported in Fig. 2a. Changes in averaged
NDVI generally corresponded to the evolution of ETc at the site, con-
sistent with reports for maize grown in Mediterranean climates in other
studies (Segovia-Cardozo et al., 2019; Toureiro et al., 2017). Fig. 2b
shows that cumulative input water (irrigation and precipitation) (618
mm) exceeded by 10.2% the site-wide cumulative ETc (561 mm). At the
bottom of Fig. 2, reference growing stages for maize at the site are
shown (Ritchie et al., 1997). Varieties needed between 120 and 130
days to reach maturity. Thus, we considered the reference growing
stages to be representative for all maize varieties grown at the site.
NDVI and ETc were low during the early vegetative stages, had

Table 1
Soil samples texture, Organic Matter (OM) and bulk density (ρb) averages at
each station.

Station Depth D<0.002 mm 0.002
< D
<
0.02
mm

0.02 <
D <
0.05
mm

0.05
< D
< 2
mm

OM (%) ρb
(gr/
cm3)

(cm) Clay (%) Fine
Silt (%)

Coarse
Silt (%)

Sand
(%)

P1 0 - 5 36 27.3 13.8 22.9 1.18 1.66
5 - 35 32 33.6 14.5 19.9 0.71 1.63
35 - 60 26.5 28.1 9.7 35.7 0.5 1.68

P2 0 - 5 25.9 26.4 14.8 32.9 1.59 1.57
5 - 35 25.2 26.1 15.1 33.6 1.1 1.58
35 - 60 24.2 23.4 14.7 37.7 0.98 1.59

P3 0 - 5 36.5 32.1 14.5 16.9 0.7 1.54
5 - 35 21.3 27.8 16.7 34.2 0.5 1.65
35 - 60 24.4 31.8 8.3 35.9 0.65 1.60

P4 0 - 5 28.7 23.6 13.2 34.5 2.71 1.48
5 - 35 28.5 28.9 11 31.6 1.02 1.59
35 - 60 28.6 19.8 10.4 41.2 1.14 1.60

P5 0 - 5 22.5 26.3 15.6 35.6 0.57 1.56
5 - 35 28.9 36.6 20.3 14.2 0.72 1.58
35 - 60 21.8 28.9 7.3 42.0 0.42 1.56

P6 0 - 5 29.9 26.9 15.1 28.1 2.11 1.64
5 - 35 29.3 25.7 14.9 30.1 0.85 1.67
35 - 60 30.2 26 14.8 29.0 0.7 1.69

P7 0 - 5 28.1 36 17.1 18.8 3.14 1.65
5 - 35 28 27.8 11.9 32.3 1.48 1.72
35 - 60 27.2 24.3 14.3 34.2 1.27 1.69

P8 0 - 5 25.7 28.7 15.2 30.4 2.22 1.58
5 - 35 27.7 26.1 14.7 31.5 1.5 1.64
35 - 60 29.2 27.3 14.7 28.8 1.02 1.78

P9 0 - 5 23.7 26.1 14.8 35.4 2.48 1.53
5 - 35 23.6 27.8 14.4 34.2 1.06 1.51
35 - 60 23.5 27.7 14.8 34 0.99 1.51

P10 0 - 5 27.7 25.8 20.3 26.2 1.84 1.61
5 - 35 28.3 29.5 19.2 26.0 0.72 1.62
35 - 60 24.6 33.5 9.5 32.4 0.81 1.80

P11 0 - 5 29.4 35.9 14.9 19.8 0.73 1.63
5 - 35 30.3 34.7 14.9 20.1 0.5 1.65
35 - 60 26.1 30.5 16.4 27.0 0.5 1.64

Table 2
Soil hydraulic parameters from each station, where: θs is the saturated water
content; θr is the residual water content; α and n are shape parameters; Ks is the
saturated hydraulic conductivity; θfc is simulated field capacity; and θwp is
wilting point. θs, θr and Ks parameters are fixed, while, α, n parameters are
fitted.

Station Depth θs θr α n Ks θfc θwp
(cm) (cm3

cm-3)
(cm3

cm-3)
(cm-1) (-) (cm· d-1) (cm3

cm-3)
(cm3

cm-3)

P1 0 - 5 0.424 0.026 0.0169 1.140 2.05 0.345 0.196
5 – 35 0.407 0.027 0.0150 1.141 2.52 0.351 0.190
35 - 60 0.364 0.037 0.0115 1.232 1.00 0.350 0.110

P2 0 - 5 0.389 0.061 0.0126 1.364 2.95 0.270 0.103
5 – 35 0.388 0.060 0.0130 1.358 2.94 0.265 0.104
35 - 60 0.321 0.047 0.0242 1.354 1.53 0.290 0.124

P3 0 - 5 0.418 0.012 0.0103 1.313 4.42 0.330 0.085
5 – 35 0.362 0.025 0.0101 1.329 5.63 0.273 0.070
35 - 60 0.341 0.017 0.0083 1.345 11.47 0.261 0.066

P4 0 - 5 0.439 0.024 0.0658 1.301 5.70 0.340 0.187
5 – 35 0.400 0.031 0.0143 1.290 4.60 0.300 0.192
35 - 60 0.395 0.018 0.0424 1.315 4.90 0.315 0.181

P5 0 - 5 0.450 0.062 0.0099 1.497 6.88 0.340 0.070
5 – 35 0.460 0.067 0.0094 1.402 1.94 0.340 0.080
35 - 60 - - - - - - -

P6 0 - 5 0.420 0.030 0.0126 1.153 12.00 0.371 0.172
5 – 35 0.430 0.050 0.0828 1.154 9.40 0.390 0.198
35 - 60 0.421 0.010 0.0974 1.146 8.10 0.390 0.182

P7 0 - 5 0.375 0.024 0.0105 1.118 1.06 0.300 0.208
5 – 35 0.349 0.026 0.0380 1.141 3.34 0.300 0.196
35 - 60 0.361 0.049 0.0391 1.141 4.10 0.280 0.107

P8 0 - 5 0.402 0.040 0.0135 1.375 4.01 0.310 0.123
5 – 35 0.379 0.030 0.0115 1.356 3.05 0.280 0.090
35 - 60 0.328 0.020 0.0121 1.287 1.75 0.280 0.080

P9 0 - 5 0.420 0.060 0.0105 1.462 5.79 0.300 0.089
5 – 35 0.430 0.060 0.0107 1.441 4.70 0.330 0.091
35 - 60 0.430 0.060 0.0109 1.433 5.52 0.330 0.090

P10 0 - 5 0.389 0.073 0.0115 1.421 3.98 0.301 0.105
5 – 35 0.387 0.072 0.0112 1.425 4.56 0.300 0.080
35 - 60 0.320 0.058 0.0181 1.256 1.87 0.290 0.090

P11 0 - 5 0.400 0.012 0.0784 1.121 10.00 0.380 0.188
5 – 35 0.451 0.018 0.0308 1.141 5.27 0.375 0.188
35 - 60 0.420 0.014 0.0121 1.112 11.00 0.350 0.250
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Fig. 2. Field average evapotranspiration, NDVI, and cumula-
tive water fluxes as a function of time and maize growth stage.
The bars on the NDVI data indicate field maximum and
minimum values. (V is vegetative stage; R is reproductive
stage NDVI is Normalized Difference Vegetation Index; ETc is
daily water requirements; Cum P + I is cumulative
Precipitation and Irrigation; and Cum ETc is cumulative water
requirements).

Fig. 3. a) Normalized Difference Vegetation Index (NDVI) datasets measured by Sentinel 2 satellite through the growing season; b) dynamic management zone (MZ)
delineation. The letter t indicates days after sowing; and c) Calinski-Harabaz criterion (CHC) for the NDVI grouped by maize variety (red squares) and with the
unsupervised fuzzy-k clustering (green dots).
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maximum values during the late vegetative stage (VT) through the
beginning of the reproductive stages (R1-R6), then decreased after R6.
The temporal changes of NDVI at the site are comparable to those
observed in other studies on maize (Viña et al., 2004). In the early
vegetative stages (V0 to V5), the NDVI range of each Sentinel 2 scene
was narrow. In later vegetative stages and early reproductive stages, the
NDVI ranges were much larger, indicating considerable variability in
crop status (greenness, health) at the site.

Fig. 3a shows the spatiotemporal changes of NDVI at the sites. Areas
with high and low NDVI were observed at the site throughout the
growing season. However, the NDVI spatial patterns changed over
time, suggesting that homogeneous or static site-specific irrigation
management may be inadequate to address crop needs over time at this
site. Fig. 3b shows the dynamic MZ delineation obtained with un-
supervised clustering of the NDVI data. The number of MZ and its
spatial distribution changed throughout the growing season. At the
beginning of the season, until 50 days after sowing, it seems that the
optimal number of homogeneous MZ was three. The MZ1 covered the
north-west side of the site and had the highest NDVI values; the MZ2
had intermediate NDVI and spanned across the south of the site until
the 45th day after sowing and after that over the south-west only. The
MZ3 had lower NDVI values and was initially the north-eastern side of
the site, then covered the entire western side of the field at 45 days after
sowing. From the 50th day after sowing, the CHC indicated that four
clusters were best at identifying areas with homogeneous NDVI . MZ1
and MZ2 remained relatively similar to their early season delineations.
The MZ4 identified an area of moderately low NDVI at the south-
eastern portion of the site, whereas MZ3, on the north-eastern side of
the site, was characterized by the lowest NDVI values. The spatial
patterns of the four MZs changed only slightly over time, until the 130th

day after sowing, when the size of MZ3 increased remarkably while
MZ4 decreased. The unsupervised NDVI clustering was compared to
dividing the site into four blocks, one for each maize variety. Fig. 3c
shows the CHC values for NDVI clustering into dynamic MZ and into
varietal-based blocks through the growing season. The dynamic MZ-
design strategy had larger CHC values for the entire growing season
than the variety-block strategy, indicating that the dynamic MZs iden-
tified by unsupervised clustering had more homogeneous NDVI than
the varietal blocks.

Fig. 3a shows contrasting NDVI values between the eastern and
western side of the field, especially visible along the boundary between
the d6980 and p1524 varieties. The boundary between the d6980 and
p1524 varieties seemed to be a big factor in the determination of the
boundary between eastern (MZ1 and MZ2) and western (MZ3 and MZ4)
zones from 55 to 120 days after sowing (Fig. 3b). Fig. A.1.f of Appendix
A shows the p1524 and d6780 varieties doing relatively poorly in July
2018. Therefore, in addition to different soil hydraulic properties on the
east side of the field, crop genetics (e.g., pest resistance, germination
rate between the varieties) and uneven management (e.g., mechanical
sowing, fertilization, soil tillage) could have been contributing factors
to the poor performance of the p1524 and d6780 varieties. Changes in
MZ delineation over time led to some changes in MZ membership for

certain soil-water monitoring stations (Table 3). These changes oc-
curred frequently in the early vegetative stages (until 54 days after
sowing). No MZ membership change occurred in the late vegetative and
reproductive stages. The MZs were characterized by contrasting soil
properties throughout the season. The MZ had significantly (p< 0.05)
different PC1 scores throughout the season according to the Kruskal
Wallis test: MZ1 and MZ2 were characterized by low PC1 scores,
whereas MZ3 and MZ4 were characterized by the highest PC1 scores
(Fig. A.3 of Appendix A).

3.3. NDVI and Water Applied

Changes in NDVI and AW across MZs are depicted in Fig. 4a (MZ1),
4b (MZ2), 4c (MZ3), and 4d (MZ4). Through the growing season, NDVI
in MZ1 and MZ2 was higher than in MZ3 and MZ4. Furthermore, NDVI
was slightly higher in MZ1 than in MZ2. Average AW in MZ1 was close
to 1 (i.e., water content was near θfc) throughout the entire growing
season. Average AW in MZ2 was greater than 1 at the beginning of the
season (until 45 days after sowing) and then very close to 1 through the
end of the growing season. Portions of MZ3 and MZ4 had lower NDVI
values than MZ1 and MZ2. In these areas, irrigation was likely ex-
cessive. AW was considerably higher than 1 for the entire vegetative
growth of maize and during the early reproductive stages. Once irri-
gation was halted in the northeastern corner of the site (i.e., approxi-
mately over the area comprised by MZ3) at 74 days after sowing, the
AW in MZ3 gradually decreased until the end of the season, while
NDVI in MZ3 remained stable. Halting irrigation in the northeastern
corner of the site had little-to-no effect on the spatial extent of MZ3 and
the other MZs, as shown in Fig. 3b. The analysis of the daily total
within-MZ AW variance (S2) provided further support for the use of
NDVI to identify areas with similar AW conditions at the site. In
Fig. 4e, the calculated total MZ variance is normalized by the daily
whole-site AW variance. Especially beyond 45 days after sowing (the
beginning of the VT growth stage), the normalized within-MZ variance
is much less than 1, showing that a large part of the total AW variance
was explained by splitting the site into dynamic MZs delineated based
on an analysis of NDVI . Fraisse et al. (2001) used yield within-zone
variance to evaluate soil-derived MZs at the end of the season. Our
results suggest that daily AW S 2 could also be used for in-season eva-
luation of management zone designs.

The AW and NDVI time series data show that soil water content
was a major factor determining NDVI spatiotemporal variability at the
site. NDVI is an indicator of the canopy vegetative growth, and several
studies have found positive correlations between NDVI , AW , and ca-
nopy vigor in different crops (Scudiero et al., 2014; West et al., 2018).
However, those studies were for water scarce conditions. It is well
known that crop water stress and reductions in canopy growth can
occur due to either deficit of water or excess of water (Feddes et al.,
1978). In the current study, where maize was grown under nearly
waterlogged conditions for most of the growing season (Fig. 4), changes
in NDVI and AW between consecutive Sentinel 2 scenes were nega-
tively correlated, with Pearson r equal to -0.64 (MZ1), -0.87 (MZ2),

Table 3
Periods where one or more stations change MZ membership.

Period (Day after sowing) MZ1 MZ2 MZ3 MZ4

Period 1 (19-29) P8, P9, P10 P1, P2, P3, P4, P5, P6 P7, P11 -
Period 2 (30-44) P8, P9, P10 P1, P2, P3, P4, P5 P6, P7, P11 -
Period 3 (45-49) P8, P10 P2, P3, P4, P5, P9 P1, P6, P7, P11 -
Period 4 (50-54) P8, P10 P2, P3, P4, P9 P7, P11 P1, P5, P6
Period 5 (55-115) P8, P10 P2, P3, P4, P5, P9 P11 P1, P6, P7
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-0.79 (MZ3), and -0.83 (MZ4) (all significant at p< 0.05). Thus, as
reported in previous studies (Long et al., 2015; Quebrajo et al., 2018;
Scudiero et al., 2018; Shanahan et al., 2008), NDVI data alone should
not be used to make irrigation management decisions; NDVI (and/or
other plant canopy information) should be integrated with soil in-
formation to properly understand plant processes at a site.

3.4. Irrigation Scheduling Simulations

With respect to within-season management decisions, one way to
make a connection between NDVI -based dynamic management zone
delineation and soil conditions would be to use a simulation model to
make within-season forecasts of soil and crop conditions for different
management options. Several authors have simulated different irriga-
tion strategies, for different purposes, in order to define the most ap-
propriate irrigation strategy (Autovino et al., 2018; Haj-Amor and
Bouri, 2020; Sakaguchi et al., 2019). In the remainder of this paper, we
determine a hypothetical optimal irrigation schedule for each growing
stage using the simulation/optimization approach developed by
Fontanet (2019).We first show that a physically based simulation
model, Hydrus-1D (Šimůnek et al., 2016), is consistent with NDVI-
based zoning by simulating the field experiment and demonstrating
agreement between measured AW and simulated available water

(SAW ), as well as showing a correspondence between simulated tran-
spiration (STa) rates and NDVI . Next, we use the calibrated model to
investigate what-if irrigation scenarios, calculating a hypothetical irri-
gation scheduling table for each dynamic MZ that could have been
generated from NDVI within season to guide irrigation.

3.4.1. Hydrus 1-D available water and transpiration simulations
The well-known Hydrus-1D model solves the Richards Equation

numerically to simulate variably saturated water flow and root water
uptake in soils. The model inputs and parameterizations used in our
simulations are detailed in Appendix B. Simulations of the experiment
for differing monitoring locations all used the same inputs and para-
meters except for (i.) the soil hydraulic properties, which were mea-
sured at each station during the field campaign (Table 2), and (ii.) the
irrigation boundary condition, which differed only for stations P10 and
P11 because irrigation was stopped during the experiment.

In Fig. 5, daily observed AW for each station is compared with
daily-simulated available water (SAW ). Generally good agreement be-
tween AW and SAW existed for all stations, although it is acknowl-
edged that the AW time courses were relatively non-dynamic. Still, the
simulations were done using independently measured hydraulic prop-
erties and without any calibration, so the agreement is quite good
(modeling details can be found in Appendix B). Missing data towards

Fig. 4. Soil profile available water (AW) and NDVI averages for a) MZ1, b) MZ2, c) MZ3, d) MZ4. Shaded areas represent the maximum and minimum AW at each
MZ, while dash lines show available water saturated (AWsat) (θ) and field capacity point (θfc). Error bars represents the maximum and minimum NDVI at each MZ.
Note that AW = 1 corresponds to a soil water content equal to field capacity. Panel e) shows the daily total within-MZ weighted variance (S2) of AW relative to the
daily field-wide AW variance (i.e., S2 = 1).

M. Fontanet, et al. Agricultural Water Management 238 (2020) 106207

7



the end of the season in P7 was due to rodents chewing on the sensor
cables.

Fig. 6 shows the weekly-simulated actual transpiration (ST )a at each
MZ and the potential transpiration (Tp) at the site. At MZ1 and MZ2, STa
weekly averages were always equal or near the potential transpiration.

At MZ3 and MZ4, STa weekly values were remarkably lower than the
potential. There was good correspondence between STa and NDVI at
each MZ, with a Pearson r of 0.6 (MZ1), 0.51 (MZ2), 0.69 (MZ3), and
0.82 (MZ4). In agreement with the results discussed for NDVI and AW
data (section 3.2. Remote Sensing and Dynamic Management Zones Deli-
neation), low STa values at MZ3 and MZ4 were due to waterlogging
(root water uptake and transpiration is reduced in the model whenever
simulated soil water content exceeds a threshold value; see Appendix
B). Stations in MZ3 and MZ4 (see Table 3) had AW and SAW over 1 for
most of the growing season (Fig. 4).

3.4.2. Irrigation scheduling for within-season decision making
We adopted the method of Fontanet (2019) to investigate optimal

irrigation scheduling for dynamic MZs In this method, irrigation of
duration [T] is prescribed whenever the soil moisture content de-
creases below a critical threshold level (hth) as indicated by readings
from a soil water pressure head sensor(s). The irrigation rate is assumed
to be a fixed constant for a given irrigation system. The recommended
duration and threshold are determined using a simulation/optimization
procedure. Simulations are made using forecasted daily or weekly crop
water demand (reference ET0) and a range of values for the irrigation
scheduling parameters, hth and . The optimal parameter values are
those that maximize seasonal transpiration in the simulations (tran-
spiration being, for many agronomically important crops, proportional
to marketable yield). In adapting the simulation/optimization method,
we make separate recommendations for each MZ, and update them
whenever there is a change in MZ station membership. The re-
commended values of hth and for a given MZ are the average values
determined for monitoring stations within the zone. For simplicity, we
use in this example the known daily potential ET0 for the forecasted
model boundary condition (rather than historical data which would be
necessary for actual within-season forecasts). Haghverdi et al. (2015)
and Liang et al. (2016) proposed calculating crop water requirements as
a function of root growth since the soil depth to refill increases as roots
grow deeper. Similarly, in our simulations, we triggered irrigation
based on readings from progressively deeper sensors as the season
progressed. In principle, when multiple sensor depths are available, the
sensor depth could be treated as an additional optimization parameter.
Full details on our implementation of the Fontanet (2019) procedure
are given in Appendix C.

Although the Fontanet (2019) method prescribes an optimized ir-
rigation schedule, in practice a grower may not be able to irrigate ex-
actly according to a schedule and sensor readings, particularly when
there are multiple management zones. Therefore, we also calculated
recommended irrigation durations (or, equivalently, irrigation
amounts) for soils that have become dryer than the “optimal” irrigation
trigger point.

The resulting irrigation scheduling calendar for dynamic-MZ irri-
gation is presented in Table 4. Optimal irrigation strategies for each
growth stage are shown in bold. The other table entries show irrigation
recommendations for field sections that are dryer than the optimal
trigger point. Across all MZs, the optimal irrigation durations were in
the range of 1.9 to 2.6 h. However, the triggering thresholds varied by
location. Thresholds for MZ1 and MZ2 were in the range of -18.3 to -30
kPa, whereas the range for MZ3 and MZ4 was -10 to -20 kPa. In general,
the recommendations are for more frequent and slightly shorter irri-
gations in MZ3 and MZ4, which are located on the east side of the field
and feature finer textured soils. With the specific Hydrus-1D model
parameterization used in the current study, uptake and transpiration
are penalized whenever any portion of the soil approaches saturation.
The recommendation of somewhat shorter, more frequent irrigations on
the east side is due to optimization’s aversion to creating overly wet soil
conditions near the surface, such as may occur (albeit briefly) during a
longer irrigation.

Fig. 5. a) Evaluation of profile available water (AW) simulations showings the
fraction of error greater than 5, 10, and 15%. b to l) Comparison between
measured available water (AW) and simulated available water (SAW) at each
station (P1 - P11).

Fig. 6. Simulated weekly transpiration at each MZ with the growing stages.
Error bars represent the maximum and minimum and the dash line shows the
weekly potential transpiration.
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Table 5 compares seasonal transpiration and irrigation simulated
with optimal scheduling versus the amounts obtained simulating the
field experiment. For MZ1 and MZ2, the optimal schedule re-
commended 11 to 13 % less water and increased transpiration by 5 to 8
%. For MZ3, 29 % less water was recommended, with an increase in
transpiration of 24 %. And for MZ4, a 17 % reduction in irrigation
corresponded to a massive 53% increase in transpiration. These results
are consistent with our earlier findings and discussion indicating the
field was over-irrigated, especially in MZ3 and MZ4.

4. CONCLUSIONS

Irrigation scheduling is complicated due to the spatial and temporal
variability of a number of variables and parameters. In this work, we in-
vestigated a workflow for improved precision irrigation scheduling using
data from a field where four maize varieties were sown. The workflow is
based on dynamic MZ delineation with unsupervised NDVI clustering.
This study demonstrates that delineation of MZs based on NDVI clustering
was able to statistically represent within-field spatial variability better
than delineating MZs only based on maize varieties. Additionally, the
optimal number and spatial configuration of the MZs were found to
change over the growing season. The highest number of MZs was four. The
MZ1 and MZ2 corresponded to field sections where NDVI values reflected
a typical maize crop performance, whereas MZ3 and MZ4 featured rela-
tively low NDVI values indicative of poor maize growth.

Soil water content showed that the variation in crop performance
was attributable to soil hydraulic properties, soil available water, and
over-irrigation. Further, a relationship existed between NDVI and soil
available water. The results indicated that soil available water could
potentially also be used for, or incorporated into, in-season evaluation

Table 4
Irrigation scheduling calendar based on growing stages and MZs distribution. hth, is the possible pressure head threshold (the optimal pressure head threshold in
bold); , , is the irrigation duration; Ztr , is the trigger soil depth. Optimal irrigation parameters representing the optimal irrigation strategy is represented in bold.

V0-V5 V6-V10 V11-V15 VT R1-R6

Trigger Depth = 10 cm Trigger Depth =20 cm Trigger Depth =20 cm Trigger Depth =40 cm Trigger Depth =40 cm

hth (kPa) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h)

MZ1 0 - - - - - - - - - -
-10 - - - - - - - - - -
-20 - - - - - - - - - -
-23.3 - - 12.5 1.9 - - - - - -
-26.7 13.1 2.0 13.5 2.1 - - - - - -
-30 14.0 2.2 14.1 2.2 19.0 2.9 15.0 2.3 17.0 2.6
-40 15.0 2.3 14.5 2.2 21.0 3.2 17.0 2.6 21.0 3.2
-60 16.0 2.5 18.5 2.8 25.0 3.8 23.0 3.5 29.0 4.5
-100 17.1 2.6 22.5 3.5 29.0 4.5 33.0 5.1 45.0 6.9

hth (kPa) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h)

MZ2 0 - - - - - - - - - -
-10 - - - - - - - - - -
-18.3 12.4 1.9 - - - - - - - -
-20 12.4 1.9 - - - - - - - -
-24 12.9 2.0 15.3 2.4 - - - - - -
-30 13.9 2.1 18.3 2.8 13.0 2.0 13.0 2.0 13.0 2.0
-40 14.4 2.2 19.3 3.0 18.0 2.8 23.0 3.5 23.0 3.5
-60 16.9 2.6 24.3 3.7 23.0 3.5 33.0 5.1 33.0 5.1
-100 19.9 3.1 30.3 4.7 29.0 4.5 45.0 6.9 45.0 6.9

hth (kPa) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h)

MZ3 0 - - - - - - - - - -
-10 - - 13.0 2.0 13.0 2.0 13.0 2.0 13.0 2.0
-20 13.0 2.0 17.0 2.6 17.0 2.6 21.0 3.2 21.0 3.2
-30 15.0 2.3 21.0 3.2 21.0 3.2 29.0 4.5 29.0 4.5
-40 16.0 2.5 23.0 3.5 23.0 3.5 33.0 5.1 33.0 5.1
-60 18.0 2.8 27.0 4.2 27.0 4.2 41.0 6.3 41.0 6.3
-100 20.5 3.2 28.0 4.3 28.0 4.3 43.0 6.6 43.0 6.6

hth (kPa) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h) Irrig. Required (mm) τ (h)

MZ4 0 - - - - - - - - - -
-10 - - - - - - 13.0 2.0 13.0 2.0
-16.7 - - - - 15.0 2.3 15.0 2.3 15.0 2.3
-20 - - - - 16.0 2.5 17.0 2.6 17.0 2.6
-30 - - - - 19.0 2.9 25.0 3.8 25.0 3.8
-40 - - - - 21.0 3.2 29.0 4.5 29.0 4.5
-60 - - - - 23.0 3.5 33.0 5.1 33.0 5.1
-100 - - - - 29.0 4.5 45.0 6.9 45.0 6.9

Table 5
Comparisons of optimal actual transpiration (OpTa), optimal water applied
(OpIA), simulated actual transpiration (STa), and simulated water applied (SAI ).

OpTa (mm) OpT ST ST( )/a a a (%) OpIA (mm) OpIA SAI SAI( )/ (%)

MZ1 405.6 8.0 525.5 −11.0
MZ2 405.6 4.8 517.8 −12.8
MZ3 107.5 23.9 217.5 −28.5
MZ4 271.7 52.6 350.2 −16.6
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of management zone designs.
Lastly, we proposed a method of combining dynamic management zone

delineation with Hydrus 1-D model forecasts for irrigation scheduling. The
field experiment was first simulated to confirm the model parameterization
and demonstrate its consistency with the obtained NDVI and soil water
content data. We then used model simulations to determine an optimal
zonation and irrigation calendar for different crop growth stages that could
have been generated and updated in real time during the season.
Simulations with the optimized irrigation schedule produced an increase in
transpiration and a decrease in water use as compared to the field trial
(which, again, was over-irrigated). The improvement was especially re-
markable for MZ3 andMZ4, where irrigation was reduced by 28.5 and 16.6
%, and transpiration increased by 23.9 and 52.6 %, respectively.

In summary, we note that although NDVI is useful for dynamically
delineating management zones, for irrigation scheduling it is re-
commended that NDVI be combined with some additional measure of
soil conditions. Low NDVI values may be indicative of poor crop per-
formance, but without other information it is not possible to determine
the cause nor recommend a remedial irrigation or management prac-
tice.
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Appendix B. Hydrus -1D Simulations

Hydrus-1D (Šimůnek et al., 2016, 2008) was used to simulated soil moisture dynamics and water balance components at each monitoring station.
Each simulation spanned 105 days, from the 18th to the 123rd day after sowing. The 60 cm soil profile consisted of three layers/materials, as specified
in Table 2. Soil hydraulic properties were specified using the van Genuchten-Mualem model (van Genuchten, 1980) Eq B.1 and B.2 as follows:
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where (cm3 cm-3) is the volumetric water content; h is the soil water pressure head (cm); s (cm3 cm-3) is saturated water content; r (cm3 cm-3) is
residual water content; Ks (cm·d-1) is saturated hydraulic conductivity; n and are shape parameters; =Se
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In Hydrus, root water uptake Eq. (B.3) is simulated using a sink term S which has three parts, the potential transpiration rate (Tp) (cm·d-1), the

root density distribution (β) (cm-1), and the dimensionless water stress function ( (h)):

=S h z t h z t z t T t( , , ) ( , , ) ( , ) ( )p (B.3)

The actual transpiration rate (Ta) Eq (B.4) (cm·d-1) is calculated by integrating Eq. (B.3) over the root zone LR:

= =T S h z t dz T h z t z t dz( , , ) ( , , ) ( , )a L p LR R (B.4)

Root depth was measured twice a month during the field campaign at P9 station. This information was used to parameterize the Hydrus root
growth module.

Water stress h( ( )) Eq (B.5) was modeled using the Feddes et al. (1978) function:
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Parameterized by four critical values of pressure head, Eq. (B.5) defines maximal uptake ( = 1) when the soil water pressure head is h h h2 3.
Water uptake decreases linearly above or below that range ( > > > >h h h h h hor3 4 1 2). And uptake is zero when h h h hor4 1. According to the
Hydrus-1D database, the parameter values for maize are h1 = -1.5, h2 = -3.0, h3 = -60. and h4 = -800. kPa, respectively. The value of h3 was
allowed to vary as a function of evaporative demand as modeled by Hyrdurs-1D.

Three observation nodes were inserted in the domain at the same depths as the soil moisture sensors, 15, 35 and 50 cm. Soil moisture values
simulated at the observation nodes were used to determine the simulated available water (SAW ), using the same procedure as with the field data.
The potential evaporation and transpiration rates were calculated by partitioning ETc into potential evaporation (Ep) and transpiration (Tp) based on
the canopy cover fraction (α) according to Raes et al. (2009). An atmospheric boundary condition was imposed at the surface and a free drainage
condition was used at the bottom. Simulated actual transpiration (STa) and simulated applied irrigation (SAI) results from each station were
extracted. STa and SAI were calculated by averaging stations located with the dynamic MZs.
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Appendix C. Irrigation Scheduling

Irrigation scheduling was optimized using the methodology developed by Fontanet (2019). All soil, environmental and crop inputs are the same
as described previously for the Hydrus-1D simulations (Appendix B). Possible values for the irrigation scheduling parameters were constrained to be
hth {-10, -20, …, −100 kPa} and {1, 2, 3, 4 h·d-1}. The irrigation rate was constant (6.5 l·h-1 m-2). The soil depth used to trigger irrigation (Ztr)
changed during the growing season, becoming deeper as the season progressed. Irrigation parameters have been defined at each station and at
different crop growing stages (V0-V5, V6-V10, V11-V15, VT, R1-R6). The optimal irrigation at each grow stage and MZ are the average values
obtained for the stations located in the MZ.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.agwat.2020.106207.
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